基于机器学习的寒区渠道冰情的遥感监测方法

遥感; 冰; 寒区渠道; 机器学习; 细小水体; Sentinel-2;
["管光华","熊发京"] 2024-03-12 期刊论文
寒区渠道冬季运行时常出现冰情,控制平封的封冻过程会大幅降低渠道输水能力,调控不当甚至可能产生冰塞、冰坝等灾害。国内外开展了大量渠道冰情研究,以期提升渠道冰期输水能力,但受限于观测资料的时空密度,数值模拟结果难以验证,调度决策缺少依据。遥感技术因其具有监测范围大、时效性高的特性,在渠道冰情监测中具有较大的应用潜力。为探索适用于寒区渠道冰情遥感监测的方法,该研究以南水北调中线京石段明渠段为研究区,基于Sentinel-2影像的11个波段反射率构建了完全特征、优选特征和组合特征3类特征空间数据集,作为支持向量机(support vector machine,SVM)、最大似然估计(maximum likelihood estimation,MLE)、随机森林(random forest,RF)分类算法输入,训练得到了9个地物分类器,用于渠道结冰范围识别,并采用北拒马闸前影像渠道结冰范围提取试验,对比不同分类算法和输入特征组合下的分类性能。结果表明:在渠道结冰范围识别中,近红外、可见光和短波红外是关键波段。在样本数量有限的条件下,SVM算法结冰范围识别精度最高,不同特征输入下制图精度(prod...
来源平台:农业工程学报