基于光谱-环境随机森林回归模型的MODIS积雪面积比例反演研究

MODIS; 光谱信息; 环境信息; 积雪面积比例; FSC; 随机森林;
["孙兴亮","郝晓华","王建","赵宏宇","纪文政"] 2022-01-11 期刊论文
积雪面积比例(Fractional Snow Cover,FSC)数据能在亚像元尺度上定量的描述像元内积雪覆盖的程度,相比二值积雪面积数据可以更加精确地估计积雪覆盖的面积。基于机器学习的随机森林回归模型可以表示高维的非线性关系,可显著提高MODIS FSC的反演精度。采用随机森林回归模型结合光谱、环境信息构建了一个新的回归模型——光谱-环境随机森林回归(Spectral Environment Random Forest Regressor,SE-RFR)模型,用于MODIS数据反演中国区域的FSC。利用中国典型积雪区内由Landsat8地表反射率数据获取的FSC数据作为参考值,对SE-RFR模型的反演精度进行评估。研究表明,利用“SE-RFR”获取的FSC数据RMSE、MAE分别为0.160、0.104,精度较高。此外,根据SE-RFR模型与未加入环境信息的随机森林回归(S-RFR)模型比较结果可知,加入环境信息的随机森林回归模型提高了FSC反演的精度,特别是在受环境信息影响较大的青藏高原地区,RMSE从0.200降低到0.181。最后,将SE-RFR模型与目前使用广泛的MODIS ...
来源平台:冰川冻土