Insights on optical absorption and isotopic properties of carbonaceous aerosol in PM2.5 and PM10 from different emission sources

Carbonaceous aerosol Stable carbon isotope Angstrom absorption exponent Mass absorption efficiency Traffic emission sources Solid fuels
["Mishra, Kumar Gaurav","Izhar, Saifi","Paul, Debajyoti","Qadri, Adnan Mateen","Gupta, Tarun"] 2025-10-01 期刊论文
Carbonaceous aerosols play a crucial role in air pollution and radiative forcing, though their light-absorbing and isotopic characteristics remain insufficiently understood. This study analyzes optical absorption and isotopic composition in PM10 and PM2.5 particles from primary emission sources, focusing on traffic-related and solid fuel categories. We analyzed key optical properties, including the Angstrom absorption exponent (AAE), the contributions of black carbon (BC) and brown carbon (BrC) to total light absorption and the mass absorption efficiencies (MAE) of carbonaceous aerosols. AAE values were lower for traffic emission sources (0.9 to 1.3) than solid fuel emission sources (1.5 to 3), with similar values for both particle sizes. BrC contributions were more prominent at shorter wavelengths and were notably higher in solid fuel emission sources (61% to 88%) than in traffic emission sources (8% to 40%) at 405 nm. MAE values of BC at 405 nm were 2 to 20 times higher than BrC across different emissions. Particle size significantly affect MAE(BC) with PM2.5 higher when compared to PM10. Emissions from diesel concentrate mixer and raw coal burning exhibited the highest MAE(BC) for PM2.5 and PM10, respectively. Conversely, Coke had the lowest MAE(BC) but the highest MAE(BrC) for both sizes. Traffic emissions showed more stable carbon isotope ratios (delta C-13) enrichment (-29 parts per thousand to -24 parts per thousand) than solid fuels (-31 parts per thousand to -20 parts per thousand). delta C-13 of solid fuel combustion, unlike traffic sources, is found to be independent of size variation. These findings underscore the importance of source and size-specific aerosol characterization for unregulated emission sources.
来源平台:ENVIRONMENTAL POLLUTION