Slope-Scale Spatial Variability of Saturated Hydraulic Conductivity and Its Drivers in the Alpine Meadows of the Qinghai-Tibet Plateau
["Sun, Yue","Mao, Tianxu","Tu, Dan","Wang, Shuang","Han, Zhengui","Zhang, Tao","Wang, Genxu"]
2025-09-01
期刊论文
(9)
The spatial distribution of saturated hydraulic conductivity (Ks) is controlled by soil processes at multiple scales, and this spatial variability is crucial to simulating soil moisture movement. Nevertheless, few studies focus on the spatial variability of Ks and how changes through alpine meadow degradation or the specific scales at which the controlling factors function. This study therefore examines the scale-dependent relationships between Ks and several primary driving factors. Soil samples were collected at an interval of 3 m along three transects on a slope in the Qinghai-Tibet Plateau (QTP) and Ks, bulk density (BD), above-ground biomass (AGB), soil organic carbon content (SOC), sand content (SAND), silt content (SILT) and clay content (CLAY) were analysed. Ks showed strong spatial dependency and irregular distribution due to alpine meadow degradation. Pearson correlation analysis revealed a significant correlation between BD, AGB and Ks (p < 0.001). Furthermore, cross-semivariograms showed that Ks exhibited strong spatial correlation with AGB and SAND. Using the state space method, we determined that BD, SOC, AGB and CLAY are the main factors that control the spatial distribution of Ks on the slope. A two-factor state-space equation based on CLAY and BD provides a good representation of Ks, enabling the prediction and estimation of Ks distribution characteristics. These findings enhance our understanding of the crucial parameters that govern hydrological processes at the slope-scale of alpine grassland on the QTP, thereby helping to elucidate permafrost-related hydrological processes related to climate change.
来源平台:HYDROLOGICAL PROCESSES