Variation of Riparian Plant CSR Strategies Across the Gradient of the Water Level Fluctuation and Snowmelt Along the Nyang River, Qinghai-Tibet Plateau

alpine meadow competitors plant functional strategies reservoir ruderals snowing soil moisture stress-tolerators
["Zhang, Yao","Alahuhta, Janne","Li, Wei","Sun, Junyao"] 2025-11-28 期刊论文
(6)
Aims Human disturbances and environmental changes significantly influence riparian vegetation composition and dynamics by altering hydrological regimes. In high-altitude river systems, snowmelt-driven water-level fluctuations add further complexity to these processes. However, little is known about how riparian plant functional strategies-competitor (C), stress-tolerator (S), and ruderal (R)-respond to dam-induced water-level fluctuations. This study aimed to assess the effects of water-level fluctuations and climatic factors on riparian vegetation functional strategies along the Nyang River, Qinghai-Tibet Plateau.Location This study was conducted along the Nyang River, Qinghai-Tibet Plateau, China. A total of 33 sites were surveyed, spanning upstream, reservoir, and downstream zones, which were categorized based on water-level fluctuation gradients.Methods We classified riparian vegetation functional strategies using Grime's CSR framework based on species trait data. Hydrological and climatic variables, including water-level fluctuations, temperature, precipitation, and snow cover, were derived from the Global Surface Water Mapping Layers and the FLDAS dataset. Soil properties were measured in the field. Redundancy analysis and partial least squares path modeling were applied to identify key drivers of CSR variation across different river zones.Results Riparian vegetation exhibited significant differences in stress tolerance and ruderal strategies across the Nyang River. Plants in the reservoir and upstream zones had higher S-strategy values, whereas downstream vegetation was predominantly characterized by high competitiveness. The primary drivers of CSR variation across the catchment were temperature, precipitation, and snow cover. In reservoir zones, water-level fluctuations (e.g., retention time, river width) were the dominant influences, whereas downstream vegetation was mainly governed by climate variables. In upstream zones, precipitation, water-level fluctuations, and snow cover jointly influenced CSR strategies. Water-level fluctuations directly regulated functional strategies, whereas snow cover had both direct effects and indirect effects via soil moisture changes.Conclusions This study highlights the interactive effects of climate change and flow regulation on riparian vegetation functional strategies in high-altitude river systems. The findings provide critical insights into how water-level fluctuations and climatic factors shape riparian plant strategies, offering valuable information for ecosystem-based river management and conservation in alpine regions.
来源平台:JOURNAL OF VEGETATION SCIENCE