Recent trends in changes of phytocenotic properties and moisture content of ground vegetation cover in the tundra zone on the western coast of the Yamal peninsula

Moisture Climate change Vegetation cover Active layer thickness Trend analysis Tundra Landsat
Kornienko, S. G. 2025-11-01 期刊论文
When developing Arctic territories, studying and forecasting the state of cryogenic landscapes in the context of climate change plays an important role. General conclusions about permafrost degradation do not fully capture changes at regional and local levels, as the direction and pace of landscape transformation depend on many factors, including the specific characteristics of the terrain. Permafrost degradation and changes in the depth of the active layer thickness (ALT) can be accompanied by alterations in ground vegetation cover (GVC) and surface moisture, which can be recorded through remote sensing (RS) data. However, there is a knowledge gap regarding the use of RS data to identify long-term trends in the phytocenotic properties of GVC and soil moisture at different geomorphological levels, as well as to determine the relationship between these trends and changes in ALT. In this study, based on Landsat data from 1985 to 2024, changes in GVC and soil moisture across various geomorphological levels were identified in a local area of the Yamal Peninsula. The analysis used the NDVI vegetation index, the NDWI moisture index, and the WI (Wetness Index) temperature-vegetation index, which reflects the moisture content of GVC and soil. The general trend observed is an increase in the growth rates of these indices as the geomorphological levels rise from the floodplain to Terrace IV. A comparison of these observed trends in the NDVI, NDWI, and WI indices with in situ geocryological observations shows the potential of using these indices as indicators of ALT change.
来源平台:REMOTE SENSING APPLICATIONS-SOCIETY AND ENVIRONMENT