Reduced snow cover at the alpine treeline: resistance and recovery of saplings

growth hydraulic conductivity living cells mortality nonstructural carbohydrates resilience snow removal experiment stem diameter variation survival
["Charra-vaskou, Katline","Charrier, Guillaume","Ganthaler, Andrea","Ameglio, Thierry","Mayr, Stefan"] 2026-02-03 期刊论文
At high elevations, tree saplings and shrubs are usually protected by mid-winter snow cover, although climate change is expected to extend the snow-free (SF) period. Exposure to winter drought, freeze-thaw events and freezing temperatures will therefore increase, inducing damages to the hydraulic system and to living cells, resulting in reduced growth and increased mortality. A snow removal experiment was carried out at 1700 m. above sea level on saplings of five different species (Acer pseudoplatanus, Juniperus communis, Larix decidua, Picea abies and Sorbus aucuparia). Stem diameter was continuously monitored and compared with spring hydraulic conductivity (PLCspring), living cell mortality (PLDspring), nonstructural carbohydrates (NSCs), growth and survival rates. Under SF conditions, saplings had higher PLCspring and higher PLDspring, and thus experienced greater winter dehydration, resulting in lower growth compared with snow-covered saplings. Summer mortality was strongly correlated with PLCspring and PLDspring. These two key ecophysiological parameters predicted the risk of mortality in all species, whereas only PLDspring reduced growth. By monitoring stem diameter during winter, we have defined indices to quantify resistance and recovery of woody plants under increased frost pressure. Recovery strategies such as resprouting or embolism repair were critical for survival, highlighting the potential vulnerability of saplings to climate change at high elevations.
来源平台:NEW PHYTOLOGIST