在列表中检索

共检索到 157
ATMOSPHERIC ENVIRONMENT

Assessing long-term changes in Aerosol Optical Depth (AOD) together with Aerosol Radiative Forcing Efficiency (ARFE, defined as radiative forcing per unit visible AOD) provides critical insight into the evolving role of different aerosol species in regional climate forcing. In this study, we analyse two decades of AOD trends (2001-2020) across eight climatically diverse regions using a multivariate regression framework, and quantify species-specific radiative effects with the Santa Barbara DISORT Atmospheric Radiative Transfer (SBDART) model. The regions were chosen to represent contrasting trends in total AOD. Our results show that sulfate aerosols, which account for the largest share of AOD over India (similar to 36-45 %), are the primary driver of increasing AOD and associated atmospheric warming. Black carbon (BC), although contributing only a minor fraction to total AOD (2-10 %), emerges as the dominant warming agent across most regions, with particularly strong forcing signals over the Middle East. In contrast, sea-salt (SS) aerosols exert the largest cooling influence, most prominently over the Southern African (SAF) region, partially offsetting warming from absorbing species. Europe, despite an overall decline in AOD, exhibits a slight increase in SS that sustains a regional cooling effect. These findings demonstrate that species composition, vertical distribution, and optical properties govern ARFE more strongly than the total AOD magnitude alone. By linking AOD trends with species-resolved radiative forcing efficiency across multiple regions, this study advances the interpretability of ARFE as a climate indicator and highlights its potential to inform policy-relevant assessment of aerosol-driven warming and cooling.

期刊论文 2026-02-15 DOI: 10.1016/j.atmosenv.2025.121693 ISSN: 1352-2310

Carbonaceous aerosols (CA) strongly impact regional and global climate through their light-absorbing and scattering properties, yet their effects remain uncertain in dust-influenced regions. We investigated the optical properties, source contributions, and radiative impacts of CA at two climatically distinct regions in northwestern India: an arid region (AR, Jodhpur; post-monsoon) and a semi-arid region (SAR, Kota; winter). Mean absorption & Aring;ngstr & ouml;m exponent (AAE) values were comparable between the two regions (AR: 1.416 +/- 0.173; SAR: 1.395 +/- 0.069), but temporal cluster analysis revealed source-specific variability, with lower AAE during traffic-dominated periods (similar to 1.30) and elevated AAE during solid fuel and biomass combustion (1.68 in AR and 1.52 in SAR). While equivalent BC (eBC) levels were higher in AR with a relatively uniform liquid-fuel contribution (BClf = 80.06 +/- 1.98 %), the mass absorption cross- of BC (MAC(BC)) in SAR was similar to 4.5X greater, driven by local solid fuel combustion and transported biomass burning emissions (BCsf = 34.61 +/- 6.88 %). Mie modelling indicated higher SSA in AR due to higher contribution of mineral dust, in contrast to SAR, where carbonaceous aerosols caused stronger absorption, forward scattering, and higher imaginary refractive index (k(OBD)). Although absorption enhancement (E-lambda) was slightly higher in AR (similar to 1.11 vs. similar to 0.99), SAR aerosols nearly doubled the warming potential (Delta RFE), with RFE values of similar to 0.87 W/m(2) in SAR versus similar to 0.43 W/m(2) in AR. These findings highlight strong source-specific and site-specific variability in aerosol absorption and radiative, emphasizing the need to integrate region-specific parameters into climate models and air quality assessments for data-scarce arid and semi-arid South Asian environments.

期刊论文 2026-01-25 DOI: 10.1016/j.atmosenv.2025.121694 ISSN: 1352-2310

The Himalayan glacier valleys are encountering escalating environmental challenges. One of the contributing factors is thought to be the rising amounts of light-absorbing carbonaceous aerosols, particularly brown carbon (BrC) and black carbon (BC), that are reaching glacier valleys. The present study examines the optical and radiative characteristics of BC at Bhojbasa, near Gaumukh (similar to 3800amsl). Real-time in-situ BC data, optical characteristics, radiative forcing, heating rate, several meteorological parameters, and BC transport pathways to this high-altitude site are investigated. The daily mean concentration of equivalent black carbon (eBC) was 0.28 +/- 0.21 mu g/m(3) over the research period, and the eBC from fossil fuel (BCFF) is dominant with 78 % with a daily mean of 0.22 +/- 0.19 mu g/m(3)(,) and eBC from biomass burning (BCBB) is 22 % with a daily mean of 0.06 +/- 0.08 mu g/m(3). Meteorological data, Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) imaging, and backward air-mass trajectory analysis demonstrate the presence of BC particles and their plausible transit pathways from multiple source locations to the pristine Gangotri Glacier Valley. The estimated daily mean BC radiative forcing values are +6.71 +/- 1.80 W/m(2) in the atmosphere, +1.87 +/- 1.16 W/m(2) at the top of the atmosphere, and -4.84 +/- 1.01 W/m(2) at the surface with a corresponding atmospheric heating rate of 0.19 +/- 0.05 K/day. These findings highlight the critical role of ground-based measurements in monitoring the fluctuations of BC over such varied Himalayan terrain, as they offer important information on the localized trends and effects. Long-term measurements of glacier valleys are essential for a comprehensive evaluation of the impact of BC particles on Himalayan ecology and climate.

期刊论文 2026-01-15 DOI: 10.1016/j.atmosenv.2025.121654 ISSN: 1352-2310

This study presents the first high-resolution Regional Climate Model 5 (RegCM5) analysis of the unprecedented May-June 2024 heatwave in India, evaluating the role of absorbing aerosols-black carbon (BC) and dust-in amplifying extreme heat. Heatwaves have a severe impact on health, mortality, and agriculture, with absorbing aerosols exacerbating warming. MERRA-2 Aerosol Optical Depth (AOD) anomalies show that BC peaked at +0.027 in May, weakening in June, while dust remained higher (up to +0.36), intensifying over the Indo-Gangetic Plain (IGP) and northwestern India. RegCM5 simulations, validated against India Meteorological Department (IMD) observational data, indicate that these aerosols amplified surface temperature anomalies, with BC-induced warming exceeding +4 degrees C in northern India during May, while dust produced stronger anomalies, surpassing +5 degrees C in the IGP and Rajasthan in June. BC-induced warming was vertically distributed and more pronounced under clear skies, whereas dust-induced warming was surface-concentrated and persisted longer in regions with higher dust concentrations. Both aerosols increased net shortwave radiation (SWR; >300 W m(-2) for BC, similar to 270 W m(-2) for dust) and upward longwave radiation (ULR; >130 W m(-2)), inducing surface energy imbalances. This radiative forcing caused lower-tropospheric warming (up to +3 degrees C at 925 hPa for BC and 850 hPa for dust) and humidity deficits (-0.009 kg/kg), which stabilised the atmosphere, suppressed convection, and delayed monsoon onset. These findings highlight aerosol-radiation interactions as critical drivers of heatwave onset and persistence, emphasizing the need for their integration into regional climate models and early warning systems.

期刊论文 2026-01-15 DOI: 10.1016/j.atmosenv.2025.121673 ISSN: 1352-2310

Light-absorbing carbonaceous aerosols, comprising black carbon (BC) and brown carbon (BrC), significantly influence air quality and radiative forcing. Unlike traditional approaches that use a fixed value of absorption & Aring;ngstrom exponent (AAE), this study investigated the absorption and optical properties of carbonaceous aerosols in Beijing for both local emission and regional transport events during a wintertime pollution event by using improved AAE results that employs wavelength-dependent AAE (WDA). By calculating the difference of BC AAE at different wavelengths using Mie theory and comparing the calculated results to actual measurements from an Aethalometer (AE31), a more accurate absorption coefficient of BrC can be derived. Through the analysis of air mass sources, local emission was found dominated the pollution events during this study, accounting for 81 % of all cases, while regional transport played a minor role. Carbonaceous aerosols exhibited a continuous increasing trend during midday, which may be attributed to the re-entrainment of nighttime-accumulated carbonaceous aerosols to the surface during the early planetary boundary layer (PBL) development phase, as the mixed layer rises, combined with the variation of PBL and anthropogenic activity. At night, variations in the PBL height, in addition to anthropogenic activities, effectively contributed to surface aerosol concentrations, leading to peak surface aerosol values during local pollution episodes. The diurnal variation of AAE470/880 exhibited a decreasing trend, with a total decrease of approximately 12 %. Furthermore, the BrC fraction showed a constant diurnal variation, suggesting that the declining AAE470/880 was primarily influenced by BC, possibly due to enhanced traffic contributions.

期刊论文 2026-01-01 DOI: 10.1016/j.atmosenv.2025.121616 ISSN: 1352-2310

The long-term trend for aerosol optical properties and climate impact sensitivity in terms of radiative forcing efficiency were analyzed at a suburban station in Athens, Southeast Mediterranean, using an extensive dataset from 2008 to 2022. The study examined scattering (nsc) and absorption (nap) coefficients, scattering & Aring;ngstrom exponent (SAE), absorption & Aring;ngstrom exponent (AAE), single scattering albedo (SSA), asymmetry parameter (g), and radiative forcing efficiency (RFE). Seasonal variability was linked to meteorological conditions and human activities. Single Scattering Albedo (SSA) was lowest (0.86), and Radiative Forcing Efficiency (RFE) was highest (-61 W/m2) in winter, confirming enhanced contributions from traffic and biomass burning. Lower SAE values (1.5) in spring indicate a greater presence of coarse particles due to frequent Saharan dust events (SDEs). Daily patterns of nap and SSA reflect local emissions, with pronounced traffic-related peaks. Aerosol classification revealed that Black Carbon (BC) dominates the suburban aerosol (51 %), with mixed BrC-BC (16 %) peaking in winter and dust-pollution mixtures (13 %) increasing in spring. The presence of large particles mixed with BC (11 %) was more frequent in spring, further highlighting seasonal variability. Trend analysis showed statistically significant (ss) decreases in nsc (-0.611) and SSA (-0.003), alongside increases in nap (+0.027) and RFE (+0.270) at a 95 % confidence level, suggesting a shift toward more absorbing aerosols. The findings provide new insights and reveal a new aerosol regime, where a reduction in anthropogenic emissions is affecting the scattering rather than the absorbing aerosol component, while the impact from forest fires as a climate feedback mechanism has a significant effect in the Eastern Mediterranean. It is important for future studies and climate modelling to account for the regionally observed changes of the state of mixing of ambient aerosol leading to a shift in radiative forcing efficiency through the reduction in SSA. This is evident in the long term for the east Mediterranean region and must be accounted for in radiative forcing estimates and future climate projections.

期刊论文 2026-01-01 DOI: 10.1016/j.atmosenv.2025.121633 ISSN: 1352-2310

The present study performed classification global aerosols based on particle linear depolarization ratio (PLDR) and single scattering albedo (SSA) provided from AErosol RObotic NETwork (AERONET) Version 3.0 and Level 2.0 inversion products of 171 AERONET sites located in six continents. Current methodology could distinguish effectively between dust and non-dust aerosols using PLDR and SSA. These selected sites include dominant aerosol types such as, pure dust (PD), dust dominated mixture (DDM), pollution dominated mixture (PDM), very weakly absorbing (VWA), strongly absorbing (SA), moderately absorbing(MA), and weakly absorbing (WA). Biomass-burning aerosols which are associated with black carbon are assigned as combinations of WA, MA and SA. The key important findings show the sites in the Northern African region are predominantly influenced by PD, while south Asian sites are characterized by DDM as well as mixture of dust and pollution aerosols. Urban and industrialized regions located in Europe and North American sites are characterized by VWA, WA, and MA aerosols. Tropical regions, including South America, South-east-Asia and southern African sites which prone to forest and biomass-burning, are dominated by SA aerosols. The study further examined the impacts by radiative forcing for different aerosol types. Among the aerosol types, SA and VWA contribute with the highest (30.14 +/- 8.04 Wm-2) and lowest (7.83 +/- 4.12 Wm-2) atmospheric forcing, respectively. Consequently, atmospheric heating rates are found to be highest by SA (0.85 K day-1) and lowest by VWA aerosols (0.22 Kday-1). The current study provides a comprehensive report on aerosol optical, micro-physical and radiative properties for different aerosol types across six continents.

期刊论文 2025-12-01 DOI: 10.1016/j.atmosenv.2025.121530 ISSN: 1352-2310

This study investigates the inter-annual variability of carbonaceous aerosols (CA) over Kolkata, a megacity in eastern India, using dual carbon isotopes (C-14 and C-13) alongside measurements of the optical properties of brown carbon (BrC). Sampling was conducted during the post-monsoon, winter, and spring seasons over two consecutive years (2020-21 and 2021-22). The analysis reveals that PM2.5 and CA concentrations were higher in 2020-21 (194 +/- 40 and 54 +/- 15 mu g m(-3), respectively) compared to 2021-22 (141 +/- 31 and 44 +/- 21 mu g m(-3)), likely due to higher precipitation in 2021-22. The contribution of biomass burning and biogenic sources to CA (f(bio_TC)) was slightly higher in 2020-21 (70 +/- 3 %) than in 2021-22 (68 +/- 3 %), with both years exhibiting a consistent decreasing trend from post-monsoon to spring. Observed lower values for oxidised CA proxies, such as the WSOC/OC ratio (0.41 +/- 0.08) and AMS-derived f(44) (0.13 +/- 0.02), throughout the study period suggest that surface CA over Kolkata primarily originates from local sources rather than long-range transport. The relative radiative forcing (RRF) also showed a clear reduction in the subsequent year; however, on average, the RRF of methanol-soluble BrC (16 +/- 6 %) was approximately three times higher than that of the water-soluble fraction (5.5 +/- 2.2 %), highlighting the substantial role of BrC in influencing regional radiative forcing. These findings underscore the substantial impact of local emissions over transported pollutants on Kolkata's ground-level air quality.

期刊论文 2025-11-15 DOI: 10.1016/j.atmosenv.2025.121458 ISSN: 1352-2310

Substantial nitrous oxide (N2O) emissions from permafrost-affected regions could accelerate climate warming, given that N2O exhibits approximately 300 times greater radiative forcing potential than carbon dioxide. Pronounced differences exist in N2O emissions between freeze and thaw periods (FP and TP), but the mechanisms by which environmental factors regulate the production and emission of N2O during these two periods have not been thoroughly examined. We therefore combined static chamber gas chromatography, in-situ soil temperature (ST) and moisture (SM) monitoring, and 16S rRNA sequencing to investigate seasonal N2O variations in the Qinghai-Tibet Plateau (QTP) alpine meadow ecosystem, and assess the relative contributions of environmental and microbial drivers. Our findings indicate that N2O fluxes (-3.15 to 6.10 mu g m-2 h-1) fluctuated between weak sources and sinks, peaking during FP, particularly at its late stage with initial surface soil thawing. Soil properties affect N2O emissions by regulating denitrification processes and altering microbial community diversity. During the FP, ST fluctuations control N2O release by modifying mineral nutrient availability. During TP, soil texture modulates denitrification-driven N2O production through its effect on SM. Spring N2O pulses likely originate from microbial reactivation in thawed soil. N2O accumulated in frozen soil may gradually release during vertical profile thawing. On the QTP, a warmer and wetter climate scenario may alter N2O emissions by modifying the duration of the FP and TP and phase-specific hydrothermal allocation. This study provides mechanistic insights for predicting climate change impacts on N2O flux in fragile alpine meadow ecosystems.

期刊论文 2025-11-15 DOI: 10.1016/j.atmosenv.2025.121510 ISSN: 1352-2310

This study examines the optical and chemical characteristics of south Asian outflow across the northern Indian Ocean during the northern hemispheric winter of the year 2018, as part of the Integrated Campaign for Aerosols, gases, and Radiation Budget (ICARB) experiment. Our observations reveal a significant influence of anthropogenic aerosols on columnar aerosol optical depth (AOD) in the equatorial Indian Ocean, with anthropogenic AOD accounting for approximately 46 % of the composite aerosol load. Water-soluble anthropogenic ions (WSAI) emerge as the primary contributor to columnar AOD across most oceanic regions of the northern Indian Ocean, attributed to their high scaling distance compared to other dominant species such as organic carbon (OC) and black carbon (BC). The assessment of speciated aerosol radiative forcing indicates the primary contribution of BC to surface forcing in coastal regions, with WSAI (followed by BC and OC) exerting dominance in far oceanic areas. Overall, anthropogenic forcing, primarily from WSAI, OC, and BC, accounts for a substantial portion of the total forcing at the top of the atmosphere (72 %) and surface (89 %) over most of the cruise regions of the southeast Arabain Sea and the equatorial Indian Ocean, with atmospheric heating predominantly attributed to BC (84 %) exhibiting highest atmospheric absorbing efficiency of 13.38. Our findings highlight the significant role of anthropogenic aerosols from south Asian outflow in shaping optical and radiative properties over the equatorial Indian Ocean and emphasize the need for further research to understand their broader climatic and environmental implications.

期刊论文 2025-11-15 DOI: 10.1016/j.atmosenv.2025.121457 ISSN: 1352-2310
  • 首页
  • 1
  • 2
  • 3
  • 4
  • 5
  • 末页
  • 跳转
当前展示1-10条  共157条,16页