The presence of frozen volatiles (especially H2O ice) has been proposed in the permanently shadowed regions (PSRs) near the poles of the Moon, based on various remote measurements including the visible and near-infrared (VNIR) spectroscopy. Compared with the middle- and low-latitude areas, the VNIR spectral signals in the PSRs are noisy due to poor solar illumination. Coupled with the lunar regolith coverage and mixing effects, the available VNIR spectral characteristics for the identification of H2O ice in the PSRs are limited. Deep learning models, as emerging techniques in lunar exploration, are able to learn spectral features and patterns, and discover complex spectral patterns and nonlinear relationships from large datasets, enabling them applicable on lunar hyperspectral remote sensing data and H2O-ice identification task. Here we present H2O ice identification results by a deep learning-based model named one-dimensional convolutional autoencoder. During the model application, there are intrinsic differences between the remote sensing spectra obtained by the orbital spectrometers and the laboratory spectra acquired by state-of-the-art instruments. To address the challenges of limited training data and the difficulty of matching laboratory and remote sensing spectra, we introduce self-supervised learning method to achieve pixel-level identification and mapping of H2O ice in the lunar south polar region. Our model is applied to the level 2 reflectance data of Moon Mineralogy Mapper. The spectra of the identified H2O ice-bearing pixels were extracted to perform dual validation using spectral angle mapping and peak clustering methods, further confirming the identification of most pixels containing H2O ice. The spectral characteristics of H2O ice in the lunar south polar region related to the crystal structure, grain size, and mixing effect of H2O ice are also discussed. H2O ice in the lunar south polar region tends to exist in the form of smaller particles (similar to 70 mu m in size), while the weak/absent 2-mu m absorption indicate the existence of unusually large particles. Crystalline ice is the main phase responsible for the identified spectra of ice-bearing surface however the possibility of amorphous H2O ice beneath optically sensed depth cannot be ruled out.
The contributions of external and internal hydration (OH and H2O) on the shape and strength of hydration related features at 3 and 6 mu m for lunar relevant nominally anhydrous minerals were investigated under vacuum conditions. Understanding the effect of hydration on the reflectance spectra of lunar analog materials in the laboratory can provide insights into remote sensing observations of the lunar surface and the potential for 3 and/or 6 mu m observations to determine the speciation of hydration on the Moon. We demonstrate changes in the shape and strength of the broad 3 mu m absorption feature in olivine and anorthite that is associated with the removal of hydration under changing environmental conditions. The overlapping nature of OH and H2O related absorption features in the similar to 3 mu m region makes it difficult to uniquely determine the speciation of hydration. Despite evidence of H2O loss in the 3 mu m region, we do not observe the fundamental bending mode of H2O at 6 mu m, posing potential challenges for the detection H2O on the lunar surface and throughout our solar system.
Surficial water ice has been detected in the permanently shaded regions (PSRs) near the lunar poles. Water ice can be detected by its diagnostic absorption features of ice at 1.0, 1.25, 1.5, and 2.0 mu m, as well as high reflectance in the VIS region. However, the effects of particle size and shape, ice abundance, and phase angle on the VNIR spectra of ice mixtures remain poorly understood, posing a challenge for detections of water ice on the lunar surface. In this study, we measured the VNIR spectra of pure water ice and mixtures of water ice and a lunar highland regolith simulant (HRS). We investigated the effects of particle size of ice (0-250 mu m), particle shape of ice (angular vs. spherical), phase angle (0-105 degrees), and ice abundance (0-50 wt%) on the VNIR spectra of water ice and HRS mixtures from 350 to 2500 nm. Our results show that coarser ice particles exhibit stronger NIR absorptions and lower VIS reflectance, attributable to increased photon absorptions due to longer optical pathlengths. Similarly, the longer optical pathlengths of spherical particles relative to angular ones result in lower VIS reflectance. The forward scattering nature of water ice leads to increased VIS reflectance at high phase angles (>90 degrees), suggesting that high phase angles are optimal for lunar water ice detection. Phase angles have a negligible effect on the strength of the NIR absorptions of ice, especially when ice is present at low ice abundances (<20 wt%) in intimate mixtures with the HRS. Lastly, our findings suggest that the NIR absorptions near 1.25, 1.5, and 2.0 mu m rapidly deepen at very low ice concentrations (0-5 wt%). We also find a linear relationship between VIS reflectance and ice content in intimate mixtures with a HRS containing 0-50 wt% ice. The findings of this study offer a detailed framework for detecting and analyzing water ice on the lunar surface via VNIR spectroscopy.
In-Situ Resource Utilization (ISRU) approaches hold significant importance in plans for space colonization. This work explores a different ISRU concept applying fast-firing, a robust and well-known industrial process, to Mars regolith simulant (MGS-1). The fast-fired specimens were compared to the ones obtained by conventional sintered under low heating rates. When the holding time at the firing temperature is longer than 15 min, fast-fired specimens exhibited higher density and flexural strength (> 35 MPa) than conventional sintering. For both processes, the bulk density values and the mechanical properties of the regolith compacts were enhanced with increasing dwell time. This was attributed to higher heating rates changing the densification/crystallization kinetics involving the basalt glass in the regolith composition. Specifically, high heating rate promotes sintering over crystallization. On these bases, fast firing can be considered a potential candidate for ISRU on Mars.
Although water ice has been detected by satellite observations near the lunar poles, it is unknown if this ice is simply frost on the Moon's surface or if larger ice deposits exist in the subsurface. If ice is present within the subsurface, it is unknown if this ice exists as loose ice grains or as a cement that binds regolith grains together. To create an economically viable extraction and production plan for lunar water ice resources, we must characterize near-surface ice concentration and distribution at small (<10 m) spatial and depth scales. Geophysical methods that can be deployed on the Moon's surface, such as seismic surveying, could supply some of this information for future lunar mine planning. To improve our understanding of how seismic surveying may detect and characterize subsurface lunar ice, we performed laboratory ultrasonic velocity measurements of lunar regolith simulant with variable amounts of granular and cementing ice. These measurements were performed under variable confining pressure (0.005-0.08 MPa) and constant low temperature (-26 degrees C). We used these measurements to calibrate a rock physics model to predict seismic velocity as a function of porosity, pressure, ice concentration and ice texture. Our results show that seismic velocity increases with ice concentration, and this increase is roughly 20 times higher for cementing ice than for granular ice. Our model can be used in future studies to predict how effective seismic methods may be for detecting and characterizing subsurface lunar ice deposits with varying ice properties and geologic complexity.
Detection of water-ice deposits using synthetic aperture radar (SAR) is a cost-effective, and efficient approach to understand lunar water resources. As water is crucial to supporting human-based space exploration, current and near upcoming lunar missions are primary concentrated on mapping and quantification of water ice exposures on surface and subsurface levels. The circular polarization ratio greater than one (CPR >1) derived using the orbital radar observations is considered as an important SAR derived parameter for water-ice detection. This study aims to investigate 14 craters near the lunar poles with high CPR (CPR >1), as identified in previous studies, using the L-band (24 cm) dual frequency synthetic aperture radar (DFSAR) onboard Chandrayaan-2. In addition to CPR, we computed the degree of polarization (DOP) after applying parallax error correction that helps in reducing misinterpretation. Our findings are based on orthorectified DFSAR calibrated data analysis. We found that the CPR of crater interiors is not significantly different from that of their surroundings, and this pattern is consistent throughout all the 14 craters selected. Further, we also found a linear inverse relationship between CPR and DOP for the interior and exteriors of the craters, with R-2 0.99, indicating a strong correlation between these two parameters. We found only 2 % of total pixels are above CPR > 1, which indicates that there is less possibility of homogeneous water-ice but the possibility of water-ice mixed with the subsurface regolith cannot be ruled out.
High-resolution digital elevation models (DEMs) of permanently shadowed regions (PSRs) at the lunar South Pole are crucial for upcoming exploration missions. Recent advances, such as high-resolution images acquired from ShadowCam, utilize indirect lighting to image PSRs. This provides data for the Shape from Shading (SFS) technique, which can extract subtle topographic details from single-image to reconstruct high-resolution terrain. However, traditional SFS methods are not suitable for complex secondary scattering scenes in PSRs with multiple secondary light sources. To address this issue, a novel secondary scattering SFS (SS-SFS) method is developed for pixel-wise 3D reconstruction of PSR surfaces, which utilizes indirect illuminated imagery and the corresponding low-resolution DEM to generate DEM with high resolution matches the input image. The proposed method effectively extracts and simplifies multiple incident facets associated with each shadowed facet through clustering, while constructing and optimizing the SS-SFS loss function. Experiments were conducted using ShadowCam images of two areas including both PSRs and temporary shadowed areas, to demonstrate the performance of the proposed method. The SS-SFS DEMs effectively capture intricate topographic details, and comparisons with adjusted Lunar Orbiter Laser Altimeter laser points indicate that the SS-SFS DEMs exhibit high overall accuracy. The high-resolution slope map of PSRs was calculated based on the SS-SFS DEMs, and overcome the limitation that surface slope is relatively underestimated from LOLA DEMs. Additionally, the SS-SFS DEMs were comprehensively compared with the traditional SFS DEMs generated using Narrow Angle Camera imagery in a small temporarily shadowed area, revealing strong consistency and further validating the effectiveness of detailed reconstruction. Overall, the proposed SS-SFS method is essential for generating high-resolution DEMs of PSRs, supporting future lunar South Pole exploration missions.
Chang'E-5 samples provide unique insights into the composition of the lunar interior similar to 2 billion years ago, but geochemical models of their formation show a significant degree of discrepancy. Trace element abundance measurements in olivine grains in Chang'E-5 sub-sample CE5C0600YJFM002GP provide additional constraints on the basalt source. Geochemical modeling indicates that low-degree (4 %) batch melting of an olivine-pyroxenite lunar magma ocean cumulate, incorporating high levels of trapped lunar magma ocean liquid and plagioclase, can reproduce the rare earth element, Sr, Rb, Sc, Co and Ni abundances in our and previously reported Chang'E-5 samples, as well as observed Rb-Sr and Sm-Nd isotope systematics. Overall, these results strengthen the direct geochemical links between lunar magma ocean evolution and basaltic volcanism occurring similar to 2.5 billion years later. Additionally, Chang'E-5 high-Fo olivine is enriched in the volatile element Ge (1.38-3.94 mu g/g) by similar to 2 orders of magnitude compared to modeled results (< 0.02 mu g/g). As Ge is a mildly compatible element with bulk Ge partition coefficients close to 1, a Ge-depleted initial LMO proposed by previous research cannot yield a high-Ge mantle source for Chang'E-5 basalt, even when invoking assimilation of high-Ge LMO cumulates. The overabundance of Ge requires either a high-Ge, volatile rich initial bulk Moon with chondritic composition or a late Ge chloride vapor-phase metasomatism.
Lunar regolith samples contain fragments of endogenic rocks and exogenous meteorites. We report the first discovery of a chondrule fragment preserved in Chang'e-5 (CE-5) regolith samples. Forsterite and enstatite phenocrysts have extremely high Mg# (> 99) and high Mn/Fe ratios in this chondrule fragment. Its glass mesostasis is heterogeneous and contains hydrogen and carbon, as indicated by Raman peaks. The mineral assemblage, chemical composition, and oxygen isotope anomaly of this fragment are similar to those of type-I chondrules from carbonaceous chondrites. This fragment and other chondritic relics with 3.4 Ga. This contrast suggests that there may have been a change of impactors to the Earth-Moon system during the Imbrian period. Furthermore, this CE-5 chondrule fragment is a direct record of volatile addition to the Moon's surface from meteorites during the Eratosthenian period.
This work reports the spatial and diurnal variations of the number densities of lunar molecular water (H2O), atomic mass unit (amu) 18 and hydroxyl (OH), amu 17 over low (0 degrees to 30 degrees), middle (31 degrees to 60 degrees) and high (61 degrees to 80 degrees) latitudinal regions of the lunar exosphere during the pre-sunrise, noon, sunset and midnight periods using the mass spectrometric data of CHandra's Atmospheric Composition Explorer-2 (CHACE-2) on board Chandrayaan-2, the second lunar mission developed in India. Both H2O and OH exhibit, particularly in the low latitude regions, a trend of increasing number density after the sunrise and up to noon, followed by a decrease till sunset. An overall higher density of H2O is obtained compared to the previous reports. The findings are justified in terms of the polar orbital height of the instrument and the duration of data procurement. The maximum number density for the low, middle and high latitudes reaches 5225 cm- 3, 5135 cm- 3 and 3747 cm- 3, respectively. The corresponding OH abundances are found to be 5079 cm-3, 5565 cm-3 and 5720 cm- 3. The diurnal variations of H2O and OH and their comparisons, similar to those of the present report may provide suitable means for tracing the lunar water cycle. The CHACE-2 observations imply that the influence of magnetotail passage on volatiles like water is to be further quantified in future missions with other sensors.