冰冻圈是全球气候系统的重要组成部分,在全球变暖背景下,冰冻圈正在快速萎缩并对全球环境和人类社会产生深远影响。我国在冰冻圈科学研究领域已取得显著成果,但冰冻圈科学普及工作仍相对滞后,科普资源稀缺、传播方式陈旧、权威传播主体缺乏等问题限制了冰冻圈知识的传播与公众参与。本文对我国冰冻圈科学普及现状进行全面分析,探讨其主要成就与不足,指出科普场馆短缺、专门人才匮乏、青少年科普图书空白、科普内容碎片化、科普形式单一等问题。基于现状,文中从科普内容、场馆、活动和人才四个角度,提出了五方面的冰冻圈科学普及发展建议,以提升公众对冰冻圈科学的认知水平,增强全民应对气候变化的能力,推动冰冻圈科学普及工作朝着更专业化、系统化和创新化方向发展。
多年冻土对全球变化非常敏感,利用植被演替揭示多年冻土区气候与环境变化具有重要意义。本文以大兴安岭漠河盆地多年冻土岩芯孢粉学为证据,通过AMS14C构建了年代学框架,重建多年冻土区更新世晚期以来植被演替与气候历史,分析了植被演替对多年冻土区环境变化的响应。结果显示孢粉组合较好地反映漠河盆地和外围山地植被组成格局,依据区域关键植被对气候指示关系,漠河盆地30 ka BP以来植被演替指示气候发生了5次显著变化过程:30.0—27.1 ka BP形成草甸湿地景观,指示气候寒冷湿润;27.1—20.5 ka BP形成针叶林草原景观,指示气候相对寒冷干旱;20.5—11.3 ka BP由针叶林湿地向针阔混交林湿地景观转变,指示气温开始转暖,但气候仍寒冷湿润;11.3—1.9 ka BP形成针阔混交林湿地景观,指示气候温暖湿润;1.9 ka BP至今形成针叶林湿地景观,指示气候冷凉湿润。通过对比分析发现,影响植被演替的因素不仅包括纬度和海陆位置上的气候差异,还有多年冻土本身引起的区域环境效应,植被演替对冰期、间冰期多年冻土变化具有不同响应机制。在末次冰盛期,由于多年冻土冻结和扩张,导致多年冻土环境更...
气候变暖正在导致北半球多年冻土区的土地覆被类型和植被生物量发生快速变化,而不同冻土类型区和不同土地覆被类型区对气候变化的响应程度尚不清楚。基于Slope趋势分析和皮尔逊相关性分析,量化了2000~2021年北半球多年冻土区归一化植被指数(NDVI)的时空变化及其对气候变化的响应。结果表明:约21.43%的多年冻土区NDVI值表现出显著增长趋势,其中连续和不连续多年冻土区的NDVI值增长速率是零星多年冻土区的2~3倍。在月尺度上,约33.75%多年冻土区的NDVI值在6月呈显著增长趋势,其中连续多年冻土区和灌丛植被类型区的增长速率最快。气温、降水量和活动层厚度均呈显著上升趋势,积雪覆盖率呈下降趋势。气温升高对俄罗斯等低纬度冻土区的植被生长起到了促进作用;降水在蒙古高原等一些特定干旱区对植被生长具有促进作用,但在俄罗斯中部和加拿大南部存在不利影响;积雪对于俄罗斯南部等积雪覆盖较低地区的植被生长有促进作用,而对于北极等积雪覆盖较高的地区存在不利影响;活动层厚度的增加有助于俄罗斯北部等冻土区的植被加速生长。总之,北半球多年冻土区植被整体呈增长趋势,气温升高仍然是北半球多年冻土区植被生长的主控因...
气候变暖对北极多年冻土和植被产生了重要的影响。CLM(Community Land Model)是应用最广泛的陆面过程模式之一,但其中复杂的边界条件和参数化过程导致模式模拟结果存在一定的不确定性。本研究评估了CLM5.0对阿拉斯加多年冻土区表层土壤温度和碳循环的模拟能力,结果表明,CLM5.0可以捕捉到表层土壤温度的季节变化。在苔原和针叶林站点,CLM5.0在日尺度和月尺度都可以很好地模拟出总初级生产力(GPP)随时间的变化,但对净生态系统碳交换(NEE)的模拟结果存在一定的不确定性。CLM5.0可以较为合理地模拟高纬度多年冻土区的土壤温度季节变化,在未来的研究中可能还需要从结构、参数化方案等过程进行改进,从而进一步提升高纬度多年冻土区碳循环的模拟精度。
受气候变暖影响,青藏高原的多年冻土正在发生广泛的退化,主要表现为融冻泥流事件的频繁发生,对生态系统和当地基础设施造成深刻影响。融冻泥流的精准识别有助于理解融冻泥流的发生和演变机制。近年来尽管基于深度学习的融冻泥流识别取得了进展,但机器学习算法在该领域的识别能力仍有待探究。本研究基于GF-2卫星遥感数据构建了一种基于集成机器学习的优化面向对象融冻泥流识别算法,引入了纹理和几何等空间信息来辅助识别融冻泥流,并基于面向对象技术改善了识别模型的错分问题。此外,基于集成学习整合不同机器学习模型的优势,以获得不低于常用深度学习模型的识别精度。结果表明,基于递归特征消除(RFE)特征选择算法剔除了多维特征数据集中的冗余特征,证明了纹理和几何信息是融冻泥流识别的有效数据补充。在优化后的面向对象机器学习模型中,随机森林(RF)的识别精度最高,总体精度为87.43%。McNemar检验表明,与单一模型相比,集成机器学习模型显著提高了融冻泥流识别精度,其总体精度为93.14%。对研究区内融冻泥流的地形特征进行统计分析后发现融冻泥流主要发生在海拔3 200~3 500 m之间,坡度介于5°~25°,并且以东北...
气候变暖导致多年冻土退化,加快热融湖塘的形成和扩张,进而增加多年冻土区的碳释放。热融湖塘沉积物理化特征与甲烷产量有着重要关系,而这一关系的明确有助于揭示青藏高原热融湖塘甲烷释放对气候变化的响应。本研究选择青藏高原中东部8个热融湖塘为研究对象,通过室内培养实验探究不同温度(5℃、10℃和15℃)下两种主要植被类型区热融湖塘甲烷产量及其与沉积物理化性质的关系。结果表明:培养周期内(50天),甲烷产量最大值出现在10℃培养条件下高寒沼泽草甸区的MD-3样品,产量高达167.63μg·g-1沉积物;最小值出现在15℃培养下高寒沼泽草甸区的AD-2样品,产量为0.01μg·g-1沉积物。从理化性质与甲烷产量的关系来看,热融湖塘深度和氨氮含量都与甲烷产量显著正相关(P<0.05),而pH值(7.08~8.40)与甲烷产量显著负相关(P<0.05),如玛多地区氨氮高、pH低,其热融湖塘沉积物的甲烷产量远大于安多地区。另外,温度敏感性指数Q10值的分析结果表明,温度升高对61.11%的甲烷产量有促进作用,对18.06%的甲烷产量有抑制影响,说明温...
政府间气候变化专门委员会(IPCC)第六次评估报告(AR6)第一工作组报告对多年冻土区土壤碳储量、碳汇效应及未来气候情景下温室气体排放进行了归纳和总结。报告明确指出,北半球多年冻土区表层土壤和深层沉积物的有机碳储量为1 460~1 600 PgC(1 Pg=10亿吨)(中等信度)。随着气候持续变暖,多年冻土显著退化,土壤有机质迅速分解并以二氧化碳(CO2)或甲烷(CH4)的形式释放到大气中,加速了气候变暖。在未来全球变暖情景下,近地表多年冻土面积将显著减少,并向大气释放CO2和CH4,造成多年冻土碳与气候的正反馈作用。报告还指出,预计到2100年,气温每升高1℃,多年冻土区CO2和CH4的排放量分别相当于18(3.1~41) PgC和2.8(0.7~7.3) PgC(低信度)。但由于所使用的估算数据异质性较大及模型之间的一致性有限,并且对多年冻土环境驱动因素及过程模型的认知尚不完整,故多年冻土对气候变化反馈的时间及幅度的可信度还处于较低水平。
冰冻圈是气候系统中的五大圈层之一,冰冻圈变化对其内部及关联生态系统的影响已成为全球变化关注的热点领域,冰冻圈生态系统的概念也得到了越来越多的应用。本文基于国内外对冰冻圈要素与生物之间相互作用的已有研究成果,对冰冻圈生态系统的组成、各冰冻圈要素与生物之间的关系进行了系统梳理。目前,冰冻圈生态系统的研究热点主要是冰冻圈生境特征和生境变化对生物群落带来的影响。从生物群落是否直接生活在冰冻圈要素内来看,可将生态系统分为以微生物为主的冰冻圈内生生态系统(endophytic ecosystem of cryosphere)和冰冻圈关联生态系统(cryosphere-related ecosystems)。总体来看,目前冰冻圈生态系统的研究主要关注不同物种(例如陆地动植物、陆地淡水生物、海洋生物、海岸动物和鸟类动物等)对冰冻圈变化的响应,未来应重点开展冰冻圈变化对生物群落影响的定量化研究,特别要考虑冰冻圈各要素变化对生物群落影响的时间尺度和空间范围。
准确模拟多年冻土地温变化,对深入了解多年冻土土壤温度变化特征、不同下垫面条件的土壤热物性以及对气候变化预测均有重要意义。运用GIPL2模型模拟阿拉斯加不同土壤类型地温,并对其实用性进行了评估。模拟结果表明:在土壤粒径较大的区域,用模型的默认参数可以模拟出土壤温度随季节变化的趋势,且在浅层的模拟值比深层更接近观测值,当深度超过0.5 m时模拟值与观测值存在较大的误差。在土壤质地复杂的区域由于土壤含水率等一系列参数对模型的影响,要准确模拟试验点的温度变化,需要可靠的观测数据。在同一地点安装气象站点和土壤参数传感器来监测多年冻土,可以为评估多年冻土热状况对气候持续变化的响应提供必要的数据。总体而言,当有足够的数据支撑时,GIPL2模型对土壤热状况的模拟精度较好,是一种模拟多年冻土区不同深度土壤热物性较为理想的模型。
热融湖塘是多年冻土区常见的地貌,全球气候变暖导致多年冻土退化会加快热融湖塘的形成和扩张,进而会增加多年冻土区碳的释放。热融湖塘沉积物与温室气体释放有着重要的关系,明确其沉积物碳氮含量等理化性质特征有助于认识青藏高原C、N循环对全球气候变化的响应。该研究选择青藏高原中东部116个热融湖塘为研究对象,采集热融湖塘沉积物样品,测定其总碳(TC)、有机碳(OC)、总氮(TN)、p H、沉积物粒径等理化性质,分析TC、OC、TN含量分布特征和各理化性质之间的关系。结果表明,TC、OC、TN含量均为高寒沼泽草甸区>高寒草甸区>高寒草原区>高寒荒漠区,沉积物粒径中粉粒加黏粒含量为高寒沼泽草甸区>高寒草原区>高寒草甸区>高寒荒漠区。研究表明:(1)沉积物TC含量为0.78~110.71 g/kg,OC含量为0.87~85.91 g/kg,TN含量为0.19~7.5 g/kg;(2)沉积物粒径与TC、OC和TN极显著相关(p<0.01);(3)热融湖塘深度与TC、OC和TN呈极显著正相关(p<0.01),表明热融湖塘越深,C、N含量越高;(4)高寒沼泽草甸...