共检索到 62
Wang, Lei

Evaluating petroleum contamination risk and implementing remedial measures in agricultural soil rely on indicators such as soil metal(loid)s and microbiome alterations. However, the response of these indicators to petroleum contamination remains under-investigated. The present study investigated the soil physicochemical features, metal(loid)s, microbial communities and networks, and phospholipid fatty acids (PLFAs) community structures in soil samples collected from long-(LC) and short-term (SC) petroleum-contaminated oil fields. The results showed that petroleum contamination increased the levels of soil total petroleum hydrocarbon, carbon, nitrogen, sulfur, phosphorus, calcium, copper, manganese, lead, and zinc, and decreased soil pH, microbial biomass, bacterial and fungal diversity. Petroleum led to a rise in the abundances of soil Proteobacteria, Ascomycota, Oleibacter, and Fusarium. Network analyses showed that the number of network links (Control vs. SC, LC = 1181 vs. 700, 1021), nodes (Control vs. SC, LC = 90 vs. 71, 83) and average degree (Control vs. SC, LC = 26.244 vs. 19.718, 24.602) recovered as the duration of contamination increased. Petroleum contamination also reduced the concentration of soil PLFAs, especially bacterial. These results demonstrate that brief exposure to high levels of petroleum contamination alters the physicochemical characteristics of the soil as well as the composition of soil metal(loid)s and microorganisms, leading to a less diverse soil microbial network that is more susceptible to damage. Future research should focus on the culturable microbiome of soil under petroleum contamination to provide a theoretical basis for further remediation. (c) 2025 The Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V.

期刊论文 2025-11-01 DOI: 10.1016/j.jes.2024.12.008 ISSN: 1001-0742

Tetracycline (TC) is effectively used antibiotic in animal husbandry and healthcare, has damaged soil ecosystems due to its misuse and residues in the soil environment. Therefore, the main objective of this study was to abate TC in hyphosphere soil by inoculating soil with arbuscular mycorrhizal fungi (AMF) and to explore its potential mechanisms. The results showed that under TC stress, inoculation with AMF reduced the contents of soil organic carbon and total nitrogen, and increased the activities of beta-glucosidase and urease in hyphosphere soil. The relative abundance of bacterial genera such as Pseudomaricurvus in the hyphosphere soil increased significantly after AMF inoculation. In addition, four bacterial genera, Cellulosimicrobium, Roseibium, Citromicrobium, and Hephaestia, were uniquely present in AMF-inoculated soil, and the functional genes Unigene456231 and Unigene565663 were significantly enriched in the hyphosphere soil. This suggests that the reshaping of the bacterial community and the enrichment of functional genes in the hyphosphere soil led to changes in the bacterial community's functions, which promoted the gradual abatement of residual TC in the soil. It should be noted that this study was solely based on a single pot experiment, and its conclusions may have certain limitations in broader ecological application scenarios. Subsequent studies will further investigate the remediation effects under different environmental factors and field trials. This study provides new insights into the use of AMF as a biological agent for the remediation of TC-contaminated soils, offering new perspectives for promoting sustainable agricultural development.

期刊论文 2025-07-01 DOI: 10.1016/j.apsoil.2025.106138 ISSN: 0929-1393

Post-grouted shafts (PGDS) and stiffened deep cement mixed (SDCM) shafts reinforce the surrounding soils with cement to enhance the bearing capacity of shaft foundations, and their applications are becoming increasingly widespread. Field tests involving two post-grouted shafts and two stiffened deep cement mixing shafts were conducted at the bridge foundations projects, analyzing the vertical bearing performance of the shafts with cement-stabilized soil enhancement. Additionally, numerical simulations were performed to establish calculation models for single shaft and groups of drilled shafts, PGDS, and SDCM shafts, enabling a comparative analysis of their bearing capacity performance within the identical strata. The results indicate that the post- grouted shaft demonstrated significant bearing deformation capacity, as confirmed by field tests. After grouting, the ultimate bearing capacities of DS1 and DS2 improved by 124.5 % and 110.9 %, respectively. In both single and group modeling shaft foundations, the post-grouted shafts demonstrated the highest bearing deformation characteristics, followed by the identical- size stiffened deep cement mixed shaft, while the long-core SDCM shafts and the ungrouted shafts exhibited the weakest performance. Due to interaction effects among group shafts, the total bearing capacity of the group shafts is not simply the sum of the individual shafts. Specifically, the reduction factor for group shaft capacity ranges from 0.68 to 0.79 at the Baoying Large Bridge site, while at the Yangkou Canal Bridge site, it varies from 0.66 to 0.85. The findings of this study provide valuable insights for practical engineering applications.

期刊论文 2025-07-01 DOI: 10.1016/j.cscm.2025.e04280 ISSN: 2214-5095

Lunar soil-based polymers, created using lunar soil as a precursor combined with highly automated 3D printing construction methods, hold great potential for lunar base construction. However, technical challenges such as ambiguities in characterizing rheological behavior and difficulties in regulation limit their 3D printing workability. To address these issues, the applicability of the Bingham model, Herschel-Bulkley (H-B) model, and a modified Bingham model to TJ-1 simulated lunar soil-based polymer was investigated by analyzing the fluidity variation. The effects of the solid-liquid ratio, Ca(OH)2, and Hydroxypropyl Methyl Cellulose ether (HPMC) on the 3D printing performance of the simulated lunar soil-based polymer were explored through one-way tests and standard deviation analysis. The results show that the modified Bingham model more accurately describes the rheological properties of TJ-1 simulated lunar soil-based polymer. HPMC proved to be an effective thixotropic agent for adjusting the 3D printing performance of the polymer. The yield stress and plastic viscosity of the polymer doped with 0.15 % HPMC were 3.577 Pa and 0.733 Pa s, respectively, meeting the requirements for printability. The yield stress and plastic viscosity of the simulated lunar soil polymers ranged from 1.84 to 3.58 Pa and 0.23-0.73 Pa s, respectively. Moreover, the compressive and flexural strengths of the simulated lunar soil polymers were significantly improved by adding Ca(OH)2. The optimal ratios for 3Dprinted simulated lunar soil polymers are a water-cement ratio of 0.30, 10 % NaOH, 8 % Na2SiO3, 6 % Ca(OH)2, and 0.10 % HPMC. Under these conditions, the 28-day compressive strength and flexural strength were 19.5 MPa and 6.9 MPa, respectively, meeting the strength standards of ordinary sintered bricks.The research results could provide a theoretical basis for the subsequent optimization of the simulated lunar soil base polymer mixing ratios for 3D printing.

期刊论文 2025-06-15 DOI: 10.1016/j.jobe.2025.112256

Alpine treelines ecotones are critical ecological transition zones and are highly sensitive to global warming. However, the impact of climate on the distribution of treeline trees is not yet fully understood as this distribution may also be affected by other factors. Here, we used high-resolution satellite images with climatic and topographic variables to study changes in treeline tree distribution in the alpine treeline ecotone of the Changbai Mountain for the years 2002, 2010, 2017, and 2021. This study employed the Geodetector method to analyze how interactions between climatic and topographic factors influence the expansion of Betula ermanii on different aspect slopes. Over the past 20 years, B. ermanii, the only tree species in the Changbai Mountain tundra zone, had its highest expansion rate from 2017 to 2021 across all the years studied, approaching 2.38% per year. In 2021, B. ermanii reached its uppermost elevations of 2224 m on the western aspects and 2223 m on the northern aspects, which are the predominant aspects it occupies. We also observed a notable increase in the distribution of B. ermanii on steeper slopes (> 15 degrees) between 2002 and 2021. Moreover, we found that interactions between climate and topographic factors played a more significant role in B. ermanii's expansion than any single dominant factor. Our results suggest that the interaction between topographic wetness index and the coldest month precipitation (Pre(1)), contributing 91% of the observed variability, primarily drove the expansion on the southern aspect by maintaining soil moisture, providing snowpack thermal insulation which enhanced soil temperatures, decomposition, and nutrient release in harsh conditions. On the northern aspect, the interaction between elevation and mean temperature of the warmest month explained 80% of the expansion. Meanwhile, the interaction between Pre(1) and mean temperature of the growing season explained 73% of the expansion on the western aspect. This study revealed that dominant factors driving treeline upward movement vary across different mountain aspects. Climate and topography play significant roles in determining tree distribution in the alpine treeline ecotone. This knowledge helps better understand and forecast treeline dynamics in response to global climate change.

期刊论文 2025-05-01 DOI: 10.1002/ece3.71368 ISSN: 2045-7758

Acid contamination has a notable influence on the geotechnical properties of soil and this influence is strongly dependent on contamination concentration (pH) and contamination duration. To fully investigate the effect of acid contamination on the microscopic and strength properties of natural clay, a series of micro- and macrolaboratory tests were performed in this study, and the mechanism of this effect was comprehensively revealed. Microscopic analysis indicates that acid contamination could lead to some mineral transformations in clay, such as illite-smectite transforming into chlorite and illite transforming into kaolinite. Besides, more large pores and a looser structure can be observed in the clay due to the erosional effects of acid contamination, which could effectively weaken the strength properties of natural clay. The experimental results also indicated that, when subjected to acid contamination, the lower contamination pH could lead to a notable decrease in clay's shear strength, while the clay's shear strength increased initially and then decreased as contamination duration increased. In addition, gray correlation analysis results demonstrated that calcite has a significant effect on cohesion, while also indicating a strong correlation between illite and the internal friction angle.

期刊论文 2025-05-01 DOI: 10.1061/IJGNAI.GMENG-10294 ISSN: 1532-3641

Heavy metal pollution and soil salinization harm human health and the environment. Phytoremediation is a widely accepted soil decontamination method, with woody plants being particularly effective due to their large biomass and extensive root systems. In this study, we identified and cloned PsnMLP328 from Populus simonii x P. nigra and demonstrated its role in mitigating salt and cadmium stress. PsnMLP328 expression was up-regulated under both stress conditions, and its overexpression in tobacco enhanced resistance to these stresses, albeit through distinct mechanisms. Transgenic plants exhibited increased Cd2+ uptake and a higher biomass, alleviating Cd2+-induced growth inhibition. Additionally, PsnMLP328 boosted proline content, chlorophyll levels, and antioxidative enzyme activities (POD, SOD) under Cd2+ stress, likely by protecting cells from oxidative damage. Expression analysis revealed that PsnMLP328 down-regulated the cadmium transporter Nramp2 while up-regulating YSL2 (another cadmium transporter) and potassium channels (AKT1 and AKT2/3), suggesting its role in modulating K+ and Cd2+ homeostasis. These findings indicate that PsnMLP328 enhances tobacco resistance to salt and cadmium stress, particularly the latter. This study is the first to elucidate the function of poplar MLP family genes under salt and cadmium stress, advancing our understanding of MLP gene roles in heavy metal stress and offering new insights for remediating salinized and heavy metal-contaminated soils.

期刊论文 2025-04-03 DOI: 10.3390/ijms26073350 ISSN: 1661-6596

The presence of toxic heavy metals lead (Pb) and cadmium (Cd) in polluted soil damage crop production and consequently harms human and livestock health. Tartary buckwheat (Fagopyrum tataricum) is a potential model plant for heavy metal phytoremediation because of its valuable characteristics of high heavy metal tolerance and abundant biomass production. Here, we report that the Tartary buckwheat FtMYB46-FtNRAMP3 module enhances plant Pb and Cd tolerance. RNA sequencing analysis showed that Pb treatment specifically induced expression of FtNRAMP3, a member of the NRAMP (Natural Resistance-Associated Macrophage Protein) transporter gene family. Further cytological and biochemical analysis revealed that FtNRAMP3 was localised to the plasma membrane and significantly contributed to increased tolerance to Pb and Cd in yeast cells. Consistently, transgenic overexpression of FtNRAMP3 in Arabidopsis significantly increased plant tolerance to Pb and Cd applications, reducing Pb concentration but increasing Cd concentration in the overexpression transgenic plants. Subsequent yeast one-hybrid and electrophoretic mobility shift assays showed that the transcription factor FtMYB46 directly binds to the FtNRAMP3 promoter. Further, FtMYB46 promoted FtNRAMP3 expression and increased plant Pb and Cd tolerance. Overall, this study demonstrates the important role of the FtMYB46-FtNRAMP3 module and its potential value in the phytoremediation of Pb and Cd stress.

期刊论文 2025-04-02 DOI: 10.1111/pce.15518 ISSN: 0140-7791

The weak mechanical properties of weak interlayers are crucial for controlling landslide deformation and failure under water level fluctuation. The instability and failure of landslides in reservoirs can lead to unpredictable consequences. In this study, the reservoir bank landslide with a weak interlayer was selected as the research subject. The material composition, structural characteristics, mechanical properties, and permeability of the landslide were determined through field investigations and tests. Additionally, a physical model test was conducted to explore the groundwater variation rules and deformation failure modes of landslides with weak interlayers under different water level fluctuation rates. The results indicate that due to the low permeability of the interlayer, there was a significant lag in monitoring data such as pore water pressure within the interlayer under the same water level fluctuation rate. At the same point, the faster the water level fluctuation rate, the greater the degree of lag. The deformation and failure mode of landslide with weak interlayer under reservoir water level fluctuation can be summarized as the following five stages: slope toe erosion stage, cracks on slope surface and interlayer stage, micro-collapse of slope toes and crack expansion of slope surface and interlayer stage, local micro-collapse of slope toe and crack penetration of slope body stage, crack development leads to landslide of slope body stage. This study provides theoretical support for prevention and control of landslides with weak interlayers in the gravel soils of reservoirs.

期刊论文 2025-04-01 DOI: 10.1007/s10064-025-04210-5 ISSN: 1435-9529

Masonry walls represent a significant architectural heritage that continues to be prevalent in various regions. Ancient masonry walls are typically constructed using mortar composed of soil and water and are characterised by low adhesion. Presently, research on the factors affecting the stability of low-bond stone masonry walls is still in the preliminary stage and lacks a unified understanding. This study investigates the factors influencing the stability of low-bond stone masonry walls, focusing on the Royal City platform wall at Shimao Site in China. A scaled-down model was constructed based on the actual conditions of the Royal City platform wall, and Schneebeli rods were loaded into the experimental model. This study examines the effects of height-to-width ratio, retaining wall inclination angle, masonry method, and mortar joint strength on wall stability. The results indicate that as the height-to-width ratio and inclination angle of the retaining wall increase, its stability decreases, and the angle between the failure surface and the horizontal direction increases. While the masonry method has a relatively minor influence on wall stability, variations in the mortar joint strength significantly impact the stability of the retaining wall. Based on the experimental results, which revealed two failure modes of overturning and sliding, a stability calculation method for low-bond stone masonry walls was derived using the limit equilibrium method. The proposed method was applied to analyse the Royal City platform wall. The findings provide valuable insights into the restoration and preservation of low-bond stone masonry walls.

期刊论文 2025-03-02 DOI: 10.1080/15583058.2025.2469597 ISSN: 1558-3058
  • 首页
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 末页
  • 跳转
当前展示1-10条  共62条,7页