共检索到 450
permafrost

Permafrost soils contain approximately twice the amount of carbon as the atmosphere and this carbon could be released with Arctic warming, further impacting climate. Mosses are major component of Arctic tundra ecosystems, but the environmental drivers controlling heat penetration though the moss layer and into the soil and permafrost are still debated, especially at fine spatial scales where microtopography impacts both vegetation and soil moisture. This study measured soil temperature profiles (1-15 cm), summer thaw depth, water table depth, soil moisture, and moss thickness at a fine spatial scale (2 m) together with meteorological variables to identify the most important controls on the development of the thaw depth during two Arctic summers. We found a negative relationship between the green moss thickness (up to 3 cm) and the soil temperatures at 15 cm, suggesting that mosses insulated the soil even at high volumetric water contents (>70%) in the top 5 cm. A drier top (2-3 cm) green moss layer better insulated deep (15 cm) soil layers by reducing soil thermal conductivity, even if the moss layers immediately below the top layer were saturated. The thickness of the top green moss layer had the strongest relationships with deeper soil temperatures, suggesting that the top layer had the most relevant role in regulating heat transfer into deeper soils. Further drying of the top green moss layer could better insulate the soil and prevent permafrost thawing, representing a negative feedback on climate warming, but damage or loss of the moss layer due to drought or fire could reduce its insulating effects and release carbon stored in the permafrost, representing a positive feedback to climate warming.

期刊论文 2026-03-01 DOI: 10.1088/2752-664X/ae212b

Both freeze-thaw cycles and vegetation cover changes significantly influence slope runoff and sediment yield in permafrost regions. Nevertheless, their synergistic mechanisms remain inadequately quantified and poorly understood. Through simulated rainfall experiments conducted on slopes in the source region of the Yangtze River, this study investigated the impacts of vegetation cover variation combined with soil freeze-thaw processes on runoff and sediment yield from typical alpine meadows and alpine steppes. The results indicate that: (1) The three factors of vegetation type and coverage, as well as rainfall intensity, jointly shape the relationship between precipitation runoff and sediment. Alpine meadows showed stronger erosion resistance than alpine steppes. (2) The freeze-thaw process of soil dominated the runoff and sediment generation: Runoff volume across varying vegetation coverage followed the order: autumn freezing period > spring thawing period > summer thawed period. However, sediment yield was highest during the spring thawing period, followed by the autumn freezing period and summer thawed period. (3) For higher vegetation coverage, freeze-thaw effects had a greater impact on runoff than on sediment yield; on the contrary, under low-coverage vegetation, the freeze-thaw process influenced sediment yield more than runoff; These findings provide theoretical guidance for achieving integrated soil erosion regulation goals in alpine grassland ecosystems within the Qinghai-Tibet Plateau under climate change.

期刊论文 2026-01-19 DOI: 10.1002/hyp.70407 ISSN: 0885-6087

Ground ice, cryostratigraphical and sediment analyses have been done on samples from 16 boreholes covering the different landforms in the lower part of the valley Longyeardalen, where the largest settlement in Svalbard, Longyearbyen, is located. This allows the production of the first ever top 1 m permafrost ice content map showing the spatial distribution of ground ice (excess ice content) for the Longyearbyen area based on the collected ground ice data and the quaternary geology map of the valley. The valley was infilled since deglaciation with up to 45 m of mainly alluvial sediment and marine mud, whereas colluvial and till deposits with thicknesses from less than 1 m to more than 7 m are dominating the hillsides surrounding the valley. Rock glaciers and ice cored moraines are the landforms with the highest ice content, with assumed over 20% excess ice in the top metre of permafrost. Till and solifluction material has a medium ice content with 10%-20% excess ice content, whereas colluvial deposits have a low ice content with 5%-10% excess ice content. These landforms all have an active layer thickness between 1.6 and 2.2 m. Alluvial deposits in the valley floor has the lowest ice content with 0%-2% excess ice content. Pore ice, suspended ice and reticulate cryostructures dominates the ground ice types, with layered, lenticular and porphyritic cryostructures also present. Marine sediments are widespread and only found in the lower parts of the valley beneath the marine limit. These findings are important to understand and to be prepared for increased landslide risk that is expected due climate warming thawing the top of permafrost and bringing more rainfall in the near future.

期刊论文 2026-01-06 DOI: 10.1002/ppp.70027 ISSN: 1045-6740

Soil moisture is a vital parameter for a variety of applications including hydrological modelling and climate change studies, particularly in permafrost regions where freeze-thaw processes and complex terrain pose significant monitoring challenges. This study evaluates the accuracy of seven surface soil moisture (SSM) products (SMOS-IC, ESA CCI, AMSR2 LPRM, SMAP-L3, SMAP-L4, ERA5-Land, GLDAS-Noah) and three root-zone soil moisture (RZSM) products (SMAP-L4, ERA5-Land, GLDAS-Noah) using in situ observations from 19 stations in the permafrost region of the Heihe River Basin, China, from 2012 to 2020. Focusing on the thawing season (July-October), the analysis employs statistical metrics including Pearson correlation coefficient (R), unbiased root mean square error (ubRMSE), bias, and slope. Results indicate that SMAP-L3 and SMAP-L4 exhibit the highest SSM accuracy (R = 0.24 and 0.23, respectively) with low ubRMSE (0.037-0.038), while ERA5-Land shows the best RZSM correlation (R = 0.43) but may indicate the presence of systematic biases, nonlinear responses, or limitations in dynamic range, among other issues (slope = 0.01). Environmental factors such as precipitation, land surface temperature, and normalised difference vegetation index significantly influence accuracy. Spatial variability and scale mismatches highlight the need for improved land surface models and data assimilation. This study provides critical insights for selecting and refining soil moisture products to enhance hydrological and climate research in permafrost regions.

期刊论文 2026-01-04 DOI: 10.1002/joc.70251 ISSN: 0899-8418

The changing Arctic climate is affecting groundwater flow and storage in supra-permafrost aquifers due to groundwater recharge changes and thaw-driven alterations to aquifer properties and connectivity. Changes to shallow subsurface hydrological processes can drive extensive ecological and biogeochemical changes in addition to potential surface hydrologic regime shifts. This study uses a pan-Arctic geospatial approach to classify shallow, unconfined Arctic aquifers (supra-permafrost aquifers) as topography-limited (TL) (characterized by low permeability, wet climate, and/or low slopes) or recharge-limited (high permeability, dry climate and/or steep slopes) based on the water table ratio framework. Under current conditions, the continuous and discontinuous permafrost zones were determined to be predominantly (65%) TL, with an average net decrease of 5.6% by the year 2100 under RCP2.6 and RCP8.5 conditions. This apparent stability masks local-scale heterogeneity, with change in aquifer function projected at dispersed locations throughout the Arctic, and in clustered hot spots in Siberia and the central Canadian Arctic. Coastal zones around the Arctic are more TL (94%) compared to the overall average, leaving them especially vulnerable to ocean-driven impacts on groundwater such as subsurface seawater intrusion or groundwater flooding. Arctic coasts in Siberia and eastern Canada are also particularly susceptible to water table rise due to high relative sea-level rise which may exceed the active layer thickness and result in substantive changes to saturation. Classification results are sensitive to input values, particularly hydraulic conductivity, which remains a source of uncertainty in the analysis. Despite the sparsity of Arctic data, the available open-source datasets provide valuable insight into broad spatiotemporal trends in aquifer function and highlight particularly vulnerable regions and geographic areas where uncertainty should drive additional data collection and study. These results provide new context for conceptualizing changes to shallow Arctic aquifers as the climate evolves in the 21st century.

期刊论文 2026-01-01 DOI: 10.1088/1748-9326/ae358e ISSN: 1748-9326

Permafrost thawing is mobilizing dissolved organic carbon (DOC) stored in Arctic frozen soils into rivers, but vertical transport mechanisms within soil columns remain unclear, hindering accurate estimation of soil-derived DOC export. Through leaching experiments on active-layer organic soils and underlying mineral permafrost, this study reveals that mineral permafrost exhibits high soil carbon loss as DOC (3.27%-11.42%). However, 11.17%-46.42% of active-layer DOC is retained by mineral permafrost during vertical transport, forming an internal soil carbon sink. The sink selectively retains aromatic compounds, acting as a molecular filter that alters DOC composition and bioavailability. This internal retention complicates interpretations of active-layer DOC transport dynamics and alters the chemistry of both thawed permafrost and exported DOC. The findings emphasize the critical role of intra-soil DOC transformations in Arctic carbon cycling.

期刊论文 2025-12-21 DOI: 10.1029/2025GL120418 ISSN: 0094-8276

Massive stores of ancient soil organic carbon (SOC) in permafrost can decompose with Arctic warming and accelerate global climate change. Declining SOC stocks are central to the permafrost carbon feedback, but direct measures of SOC loss are extremely rare due to methodological challenges related to subsidence in the Arctic. To fully capture changing SOC dynamics during thaw, we directly measured SOC stock and bulk soil radiocarbon (C-14) changes, while accounting for subsidence, during 13 years of permafrost thaw in a warming experiment in Interior Alaska. We found significant declines in SOC stocks: 14% (+/- 6%) in ambient plots that experienced regional warming and 23% (+/- 5%) in snow fence warmed plots, entirely in deep, mineral soil layers. Losses were largely driven by winter soil warming but were mediated by changing soil moisture and vegetation conditions. Plots with low shrub biomass had greater SOC losses, suggesting that vegetation community composition may play an important role in SOC storage. Surface soil C-14 measurements suggest that carbon inputs were three times greater in warming plots compared to ambient plots, but that decomposition increased proportionally leading to no detectable change in surface organic layers. We observed significant SOC losses of 5.2-8.1 kg C m(-2) from deeper soil layers where carbon was sequestered similar to 2400 to similar to 4500 years ago. Our findings indicate that warmer soils in the winter will accelerate SOC losses, but that increasing density of shrub species through shrub expansion could help to mitigate SOC losses in deep soils. The significant loss of SOC from deep, mineral soils observed over just 13 years of ambient and experimental permafrost thaw highlights the vulnerability of this old C pool as it enters the active global carbon cycle.

期刊论文 2025-12-07 DOI: 10.1111/gcb.70609 ISSN: 1354-1013

The development of thermokarst lakes on the Qinghai-Tibetan Plateau (QTP) serves as a prominent indicator of permafrost degradation driven by climate warming and increased humidity. However, quantitative observations of surface change and relationships between lakes and permafrost during thermokarst development remain inadequate. This study utilized long-term terrestrial laser scanning (TLS) to capture high-resolution data on the surface contour changes of the lake in the Beiluhe Basin over 3 years. Between June 2021 and September 2023, the area of BLH-B Lake increased by 19.23% to 6634 m2, with a maximum shoreline retreat distance of 14.37 m. Lake expansion exhibited pronounced seasonal characteristics, closely correlated with temperature and precipitation variations, with the most significant changes occurring during thawing periods. Notably, the lake expanded by up to 505 m2 during extreme rainfall events in the 2022 thawing period, accounting for 47.20% of the total expansion observed over 3 years. Integrated geophysical methods, including electrical resistivity tomography (ERT) and ground-penetrating radar (GPR), revealed substantial permafrost degradation, particularly along the northwestern and western shores, where talik formation occurred within 40 m of the lakeshore. Heat from groundwater flow within the active layer and direct solar radiation contributes to accelerated permafrost degradation around the lake. The integration of TLS with geophysical methods revealed both surface contour changes and subsurface permafrost conditions, providing a comprehensive view of the dynamics of thermokarst lakes. This integrated monitoring approach proves effective for studying thermokarst lake evolution, offering critical quantitative insights into permafrost degradation processes on the QTP and providing essential baselines for climate change impact assessment.

期刊论文 2025-11-26 DOI: 10.1002/ldr.70340 ISSN: 1085-3278

Permafrost degradation, driven by rising temperatures in high-latitude regions, destabilizes previously sequestered soil organic carbon (OC), increasing greenhouse gas emissions and amplifying global warming. In these ecosystems, interactions with mineral surfaces and metal oxides, particularly iron (Fe), stabilize up to 80% of soil OC. This study investigates the mechanisms of Fe solubilization and OC release across a permafrost thaw gradient in Stordalen, Abisko, Sweden, including palsa, intermediate, and highly degraded permafrost stages. By integrating geophysical measurements-including relative elevation, thaw depth, soil water content, and soil temperature with redox potential and soil pore water chemistry, we identify the environmental conditions driving iron and organic carbon release into soil pore waters with permafrost degradation. Our results show that combining relative elevation, thaw depth, soil water content, soil pore water pH, and soil pore water conductivity with shifts in vegetation species enables very-high-resolution detection of permafrost degradation at submeter scales, distinguishing intact from degraded permafrost soils. We show that small-scale changes in thaw depth and water content alter soil pH and redox conditions, driving the release of Fe and dissolved organic carbon (DOC) and promoting the formation of Fe-DOC complexes in soil pore water. The amount of exported Fe-DOC complexes from thawed soils varies with the stage of permafrost degradation, and the fate of Fe-DOC complexes is likely to evolve along the soil-stream continuum. This study highlights how environmental conditions upon thaw control the type of Fe-DOC association in soil pore waters, a parameter to consider when quantifying what DOC is available for microbial and photo-degradation in aquatic systems which are significant sources of greenhouse gas emissions across Arctic landscapes.

期刊论文 2025-11-26 DOI: 10.1002/ppp.70018 ISSN: 1045-6740

Permafrost thaw is transforming boreal forests into mosaics of wetlands and drier uplands. Topographic controls on hydrological and ecological conditions impact methane (CH4) fluxes, contributing to uncertainty in local and regional CH4 budgets and underlying drivers. The objective of this study was to explore CH4 fluxes and their drivers in a transitioning boreal forest-fen ecosystem (Goldstream Valley, Alaska, USA). This landscape is characterized by thawing discontinuous permafrost and heterogeneous mosaics of fens, collapse-scar channels, and small mounds of permafrost soils. From a survey in July 2021, observed chamber CH4 fluxes included fen areas with intermediate to very high emissions (29.8-635.3 mg CH4 m(-2) d(-1)), clustered locations with CH4 uptake (-2.11 to -0.7 mg CH4 m(-2) d(-1)), and three anomalous emission hotspots (342.4-772.4 mg CH4 m(-2) d(-1)) that were located near samples with lower emissions. Some surface and near-surface variables partially explained the spatial variation in CH4 flux. Log-transformed CH4 flux had a positive linear relationship with soil moisture at 20 cm depth (R-2 = 0.31, p-value < 1e-5) and negative linear relationships with microtopography (R-2 = 0.13, p-value < 0.006) and slope (R-2 = 0.28, p-value < 2e-5). Methane emissions generally occurred in flat, wet, graminoid-dominated fens, whereas CH4 uptake occurred on permafrost mounds dominated by feather mosses and woody vegetation. However, the CH4 hotspots occurred on drier, slightly sloped locations with low or undetectable near-surface methanogen abundance, suggesting that CH4 was produced in deeper soils. When the hotspot samples were omitted, log-transformed CH4 flux had a positive linear relationship with near-surface methanogen abundance (R-2 = 0.29, p-value = 0.0023), and stronger linear relationships with soil moisture, slope, and soil macronutrient concentrations. Our findings suggest that some CH4 emission hotspots could arise from CH4 in deep taliks. The inference that methanogenesis occurs in deep taliks was strengthened by the identification of intrapermafrost taliks across the study area using low-frequency geophysical induction. This study assesses surface spatial heterogeneity in the context of subsurface permafrost conditions and highlights the complexity of CH4 flux patterns in transitioning forest-wetland ecosystems. To better inform regional CH4 budgets, further research is needed to understand the spatial distribution of terrestrial CH4 hotspots and to resolve their surface, near-surface, and subsurface drivers.

期刊论文 2025-10-01 DOI: 10.1088/1748-9326/adff9a ISSN: 1748-9326
  • 首页
  • 1
  • 2
  • 3
  • 4
  • 5
  • 末页
  • 跳转
当前展示1-10条  共450条,45页