Reservoir landslides represent a significant geological hazard that jeopardizes the safety of reservoirs. Deformation monitoring and numerical simulation are essential methodologies for elucidating the evolutionary patterns of landslides. Nonetheless, the existing approaches exhibit limitations in revealing the potential deformation mechanism. Consequently, this study proposes an innovative strategy that incorporates interferometric synthetic aperture radar (InSAR) deformation characteristics alongside fluid-solid coupling stress analysis to investigate the deformation, focusing on the Shuizhuyuan landslide within the Three Gorges Reservoir area as a case study. Using temporary coherence point InSAR technology, significant motion units were identified, with a maximum deformation rate of -60 mm/yr. The complete deformation time series reveals three independent components of landslide movement and their trigger factors geometrically. Subsequently, the saturation permeability coefficient of the sliding mass in the seepage analysis is modified with the assistance of InSAR deformation. Then, we coupled the seepage analysis results to FLAC3D model for stress and strain analysis, and determined the seepage-induced progressive failure mechanism and the deformation mode of the Shuizhuyuan landslide, driven by reservoir water-level (RWL) drop. The numerical simulation results aid in interpreting the deformation mechanism of different spatial and temporal patterns of landslides from three aspects: hydrodynamic pressure from rainfall infiltration, groundwater hysteresis caused by RWL drop, and seepage forces from RWL rise. Furthermore, our findings reveal that the dynamic factor of safety (FOS) of landslide during the InSAR observation period is highly consistent with the periodic fluctuations of the RWL. However, there is also a small trend of overall decline in FOS that cannot be ignored.
The abrupt occurrence of the Zhongbao landslide is totally unexpected, resulting in the destruction of local infrastructure and river blockage. To review the deformation history of the Zhongbao landslide and prevent the threat of secondary disasters, the small baseline subsets (SBAS) technology is applied to process 59 synthetic aperture radar (SAR) images captured from Sentinel-1A satellite. Firstly, the time series deformation of the Zhongbao landslide along the radar line of sight (LOS) direction is calculated by SBAS technology. Then, the projection transformation is conducted to determine the slope displacement. Furthermore, the Hurst exponent of the surface deformation along the two directions is calculated to quantify the hidden deformation development trend and identify the unstable deformation areas. Given the suddenness of the Zhongbao landslide failure, the multi-temporal interferometric synthetic aperture radar (InSAR) technology is the ideal tool to obtain the surface deformation history without any monitoring equipment. The obtained deformation process indicates that the Zhongbao landslide is generally stable with slow creep deformation before failure. Moreover, the Hurst exponent distribution on the landslide surface in different time stages reveals more deformation evolution information of the Zhongbao landslide, with partially unstable areas detected before the failure. Two potential unstable areas after the Zhongbao landslide disaster are revealed by the Hurst exponent distribution and verified by the GNSS monitoring results and deformation mechanism discussion. The method combining SBASInSAR and Hurst exponent proposed in this study could help prevent and control secondary landslide disasters. (c) 2024 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/ by/4.0/).
Land subsidence is an environmental geological phenomenon mainly caused by groundwater overexploitation. Long-term overexploitation of groundwater not only causes compaction of aquifer thickness and surface deformation but also leads to the loss of aquifer water storage capacity. The skeleton water storage coefficient (S-k) is an important parameter for evaluating the water storage capacity of aquifer groups. This article proposes a new research framework for obtaining the S-k of different aquifer groups: combining permanent scatter for SAR interferometry technology and a multiscale geographic weighted regression model to obtain subsidence information for different aquifer groups, inverting the S-k of different aquifer groups from the spatial scale, and discussing the deformation characteristics of soil layers under different water head change modes to evaluate the deformation and water storage characteristics of different aquifer groups. This framework is applied to the land subsidence region of the Beijing Plain. We calculated that the settlement proportions of different compression layer groups were 14.75%, 23.65%, 33.44%, and 28.16%. Due to the different lithological compositions and groundwater exploitation of different aquifers, the S-k values exhibit different spatial distribution characteristics. With the continuous development of subsidence, the water storage performance of the aquifer group is continuously declining. These findings contribute to managing the sustainable use of groundwater resources and controlling subsidence. It is demonstrated that the research framework proposed in this article can serve as an effective tool for obtaining settlement information and the S-k of different aquifer groups.
The increase in temperatures and changing precipitation patterns resulting from climate change are accelerating the occurrence and development of landslides in cold regions, especially in permafrost environments. Although the boundary regions between permafrost and seasonally frozen ground are very sensitive to climate warming, slope failures and their kinematics remain barely characterized or understood in these regions. Here, we apply multisource remote sensing and field investigation to study the activity and kinematics of two adjacent landslides (hereafter referred to as twin landslides) along the Datong River in the Qilian Mountains of the Qinghai-Tibet Plateau. After failure, there is no obvious change in the area corresponding to the twin landslides. Based on InSAR measurements derived from ALOS PALSAR-1 and -2, we observe significant downslope movements of up to 15 mm/day within the twin landslides and up to 5 mm/day in their surrounding slopes. We show that the downslope movements exhibit distinct seasonality; during the late thaw and early freeze season, a mean velocity of about 4 mm/day is observed, while during the late freeze and early thaw season the downslope velocity is nearly inactive. The pronounced seasonality of downslope movements during both pre- and post-failure stages suggest that the occurrence and development of the twin landslide are strongly influenced by freeze-thaw processes. Based on meteorological data, we infer that the occurrence of twin landslides are related to extensive precipitation and warm winters. Based on risk assessment, InSAR measurements, and field investigation, we infer that new slope failure or collapse may occur in the near future, which will probably block the Datong River and cause catastrophic disasters. Our study provides new insight into the failure mechanisms of slopes at the boundaries of permafrost and seasonally frozen ground.
As one of the best indicators of the periglacial environment, ice-wedge polygons (IWPs) are important for arctic landscapes, hydrology, engineering, and ecosystems. Thus, a better understanding of the spatiotemporal dynamics and evolution of IWPs is key to evaluating the hydrothermal state and carbon budgets of the arctic permafrost environment. In this paper, the dynamics of ground surface deformation (GSD) in IWP zones (2018-2019) and their influencing factors over the last 20 years in Saskylakh, northwestern Yakutia, Russia were investigated using the Interferometric Synthetic Aperture Radar (InSAR) and Google Earth Engine (GEE). The results show an annual ground surface deformation rate (AGSDR) in Saskylakh at -49.73 to 45.97 mm/a during the period from 1 June 2018 to 3 May 2019. All the selected GSD regions indicate that the relationship between GSD and land surface temperature (LST) is positive (upheaving) for regions with larger AGSDR, and negative (subsidence) for regions with lower AGSDR. The most drastic deformation was observed at the Aeroport regions with GSDs rates of -37.06 mm/a at tower and 35.45 mm/a at runway. The GSDs are negatively correlated with the LST of most low-centered polygons (LCPs) and high-centered polygons (HCPs). Specifically, the higher the vegetation cover, the higher the LST and the thicker the active layer. An evident permafrost degradation has been observed in Saskylakh as reflected in higher ground temperatures, lusher vegetation, greater active layer thickness, and fluctuant numbers and areal extents of thermokarst lakes and ponds.
Under the influence of climate change, permafrost landforms are sensitive to seasonal heave and contraction, thus exacerbating surface instability and fostering landslides as a consequence. In the pastureland of Zhimei on the Qinghai-Tibet Plateau (QTP), a typical earthflow has drawn significant attention through social media. However, detailed knowledge of the deformation characteristics, internal hydrothermal regime, and structure is still scarce. In this study, we aim to enhance traditional satellite synthetic aperture radar interferometry to divide ground deformation into the seasonal oscillation and slope deformation components and identify the magnitude and spatial distribution of unstable slopes in frozen regions. Then, the use of unmanned aerial vehicles (UAVs) was combined with geophysical monitoring techniques to recognise the deformation dynamics from the pre- to post-failure stages. Sentinel-1 images, covering almost five years, highlighted that obvious creep behaviour dominated at the pre-failure stage, while a seasonal deformation pattern characterised by a piecewise distribution associated with the hydrothermal regime was observed at the post-failure stage. Fast retrogressive erosion on the head scarps at the post-failure stage was clearly identified by multidifferential digital surface models from the UAV observations. To better understand the internal structure, both electrical resistivity tomography and ground-penetrating radar were combined to determine the seasonal frozen thickness, underlying thawing materials, and vertical cracks, which controlled the kinematic evolution from the initial creep to the narrow and long oversaturated flow that represented the terminal portion of the landslide. Finally, by comparing in situ monitoring data with field investigations, the main driving factors controlling the movement mechanism are discussed. Our results highlight the specific kinematic behaviour of an earthflow and can provide a reference for slope destabilisation on the QTP under the influence of climate change.
高精度极地数字高程模型(DEM)对于我国极地研究和探索具有重要意义。德国空间局开发的分布式合成孔径雷达干涉(InSAR)测绘卫星TanDEM-X已经被证明是获取大范围高精度DEM的有效工具。X波段在冰雪表面具有一定的穿透性,会导致极地DEM存在偏差。目前国内外针对X波段在极地冰雪表面的穿透研究还很少。本文利用TanDEM-X单发双收干涉数据生成高分辨率南极冰雪地区DEM,通过与同季节的高分辨率光学DEM(REMA)差分来估计X波段穿透深度。实验结果表明:靠近Mellor冰川下游的Lambert盆地中部冰盖表面穿透深度大部分为0.5 m,少数地区可达到2 m以上;Lambert冰川下游的冰流表面大部分为1~2 m左右;山区冰雪表面可达3.9 m。高穿透值多数分布在高海拔内陆地区,而低穿透值多分布在冰流和低海拔沿海地区。穿透深度随地表含水量升高而降低。估计X波段穿透深度是明确TanDEM-X卫星在极地测绘精度的前提,对于优化后续国产分布式SAR测绘星座极地工作模式有一定的促进作用。
高精度极地数字高程模型(DEM)对于我国极地研究和探索具有重要意义。德国空间局开发的分布式合成孔径雷达干涉(InSAR)测绘卫星TanDEM-X已经被证明是获取大范围高精度DEM的有效工具。X波段在冰雪表面具有一定的穿透性,会导致极地DEM存在偏差。目前国内外针对X波段在极地冰雪表面的穿透研究还很少。本文利用TanDEM-X单发双收干涉数据生成高分辨率南极冰雪地区DEM,通过与同季节的高分辨率光学DEM(REMA)差分来估计X波段穿透深度。实验结果表明:靠近Mellor冰川下游的Lambert盆地中部冰盖表面穿透深度大部分为0.5 m,少数地区可达到2 m以上;Lambert冰川下游的冰流表面大部分为1~2 m左右;山区冰雪表面可达3.9 m。高穿透值多数分布在高海拔内陆地区,而低穿透值多分布在冰流和低海拔沿海地区。穿透深度随地表含水量升高而降低。估计X波段穿透深度是明确TanDEM-X卫星在极地测绘精度的前提,对于优化后续国产分布式SAR测绘星座极地工作模式有一定的促进作用。
高精度极地数字高程模型(DEM)对于我国极地研究和探索具有重要意义。德国空间局开发的分布式合成孔径雷达干涉(InSAR)测绘卫星TanDEM-X已经被证明是获取大范围高精度DEM的有效工具。X波段在冰雪表面具有一定的穿透性,会导致极地DEM存在偏差。目前国内外针对X波段在极地冰雪表面的穿透研究还很少。本文利用TanDEM-X单发双收干涉数据生成高分辨率南极冰雪地区DEM,通过与同季节的高分辨率光学DEM(REMA)差分来估计X波段穿透深度。实验结果表明:靠近Mellor冰川下游的Lambert盆地中部冰盖表面穿透深度大部分为0.5 m,少数地区可达到2 m以上;Lambert冰川下游的冰流表面大部分为1~2 m左右;山区冰雪表面可达3.9 m。高穿透值多数分布在高海拔内陆地区,而低穿透值多分布在冰流和低海拔沿海地区。穿透深度随地表含水量升高而降低。估计X波段穿透深度是明确TanDEM-X卫星在极地测绘精度的前提,对于优化后续国产分布式SAR测绘星座极地工作模式有一定的促进作用。
多年冻土及其活动层的变化对研究全球气候变化和生物多样性具有重要意义。传统的冻土测量方法通常只针对特定地点,空间覆盖范围有限,尤其是青藏高原冻土。本文采用C波段Sentinel-1A IW模式数据并结合一种顾及永久散射体的小基线SAR干涉(SBAS)技术,对青藏高原沱沱河地区地面形变和冻融过程进行了研究。探测到的地面位移速率(主要范围为-20~20 mm/a)和位移时间序列反映了多年冻土及活动层的演化。试验结果与水准测量数据具有较好的一致性,且该方法优于一般多时相InSAR方法。此外,分析了SAR成像几何与地表位移之间的关系,解释了在多年冻土区特别是对于山坡的运动趋势。试验结果展示了InSAR的监测能力,并提高了对多年冻土区地表形变的认识。