天山地区孕育着大量的跃动型冰川,目前该地区冰川跃动过程及跃动控制机制尚不明确。利用Landsat、Sentinel-1A、TerraSAR-X/TanDEM-X等多源遥感数据获得了中天山穆什科托夫冰川跃动前后的表面特征、流速和高程变化。结果表明:(1)该冰川主干表面流速从2017年夏末开始增加,在冬季流速达到最大峰值,约为4.4 m d-1,2018年夏末急剧减小;(2)2000—2012年冰川积蓄区平均增厚9.23±4.62 m,跃动前锋形成,而冰舌部分是以减薄为主;2012—2014年冰舌部分持续减薄,中上游仍以积累为主,增厚约1.23±0.91 m;2014—2018年冰川积蓄区出现明显减薄,最大减薄42.6±1.82 m,接收区高程显著增加,最高隆起75.6±1.82 m。根据冰川表面流速及高程变化特征,确认2017—2018年为该冰川跃动活跃期;结合冰川流动定律,认为穆什科托夫冰川跃动主要受冰下水文控制。根据现有的资料及数据,推断该冰川跃动间隔约为60 a。
天山地区孕育着大量的跃动型冰川,目前该地区冰川跃动过程及跃动控制机制尚不明确。利用Landsat、Sentinel-1A、TerraSAR-X/TanDEM-X等多源遥感数据获得了中天山穆什科托夫冰川跃动前后的表面特征、流速和高程变化。结果表明:(1)该冰川主干表面流速从2017年夏末开始增加,在冬季流速达到最大峰值,约为4.4 m d-1,2018年夏末急剧减小;(2)2000—2012年冰川积蓄区平均增厚9.23±4.62 m,跃动前锋形成,而冰舌部分是以减薄为主;2012—2014年冰舌部分持续减薄,中上游仍以积累为主,增厚约1.23±0.91 m;2014—2018年冰川积蓄区出现明显减薄,最大减薄42.6±1.82 m,接收区高程显著增加,最高隆起75.6±1.82 m。根据冰川表面流速及高程变化特征,确认2017—2018年为该冰川跃动活跃期;结合冰川流动定律,认为穆什科托夫冰川跃动主要受冰下水文控制。根据现有的资料及数据,推断该冰川跃动间隔约为60 a。
天山地区孕育着大量的跃动型冰川,目前该地区冰川跃动过程及跃动控制机制尚不明确。利用Landsat、Sentinel-1A、TerraSAR-X/TanDEM-X等多源遥感数据获得了中天山穆什科托夫冰川跃动前后的表面特征、流速和高程变化。结果表明:(1)该冰川主干表面流速从2017年夏末开始增加,在冬季流速达到最大峰值,约为4.4 m d-1,2018年夏末急剧减小;(2)2000—2012年冰川积蓄区平均增厚9.23±4.62 m,跃动前锋形成,而冰舌部分是以减薄为主;2012—2014年冰舌部分持续减薄,中上游仍以积累为主,增厚约1.23±0.91 m;2014—2018年冰川积蓄区出现明显减薄,最大减薄42.6±1.82 m,接收区高程显著增加,最高隆起75.6±1.82 m。根据冰川表面流速及高程变化特征,确认2017—2018年为该冰川跃动活跃期;结合冰川流动定律,认为穆什科托夫冰川跃动主要受冰下水文控制。根据现有的资料及数据,推断该冰川跃动间隔约为60 a。
新元古代铁建造在全球各古大陆均有不同程度的分布,常与冰碛岩或裂谷火山岩系在时空上密切相关,其形成是大洋氧逸度显著升高的重要标志之一。因而,新元古界铁建造已成为理解新古元代雪球地球事件和Rodinia超大陆裂解过程的重要研究对象,同时对于揭示新元古代地壳增生过程、气候、环境和生命演化等具有重要研究意义。前人研究表明,北疆地区发育三套成冰纪冰碛岩和大量双峰式岩浆岩,雪球地球和Rodinia超大陆裂解事件在该区响应强烈。然而,目前尚无针对该区新元古界铁建造的详细研究。本项目选择处于新元古代Rodinia超大陆裂解和雪球地球事件关健时期的中天山沙垄铁矿为研究对象,开展精细的锆石年代学、地球化学、同位素和矿床学综合研究,在确定沙垄铁矿的精确年龄、沉积环境和大地构造背景的基础上,与邻区及全球新元古宙铁建造进行综合对比,探讨和揭示中天山和北疆地区新元古代的构造属性、构造背景及其与全球超大陆演化的关系。
2014-01