中中新世气候转型(14.2~13.9 Ma)是全球联动的一个快速气候变化事件,冰盖、洋流和碳循环均发生显著变化,厘清其驱动机制对理解新生代全球变冷有重要意义。对此已有研究提出2种假说:一种重视洋流重组,另一种则突出碳循环的重要性,但二者都无法完美解释中中新世气候转型的种种现象。实际上,冰盖—洋流—碳循环三者形成耦合的系统,共同造成地球气候变化。综合已有的地质记录,两类机制均导致深部大洋碳储库增大,大气p CO2降低,并进一步促进气候变冷和冰盖增长,表明不同子系统之间的耦合作用引起气候突变。相较于碳循环过程和冰盖变化,学术界对中中新世气候转型期间洋流变化的了解较少,特别是南大洋和太平洋深部水团。未来的研究应聚焦于深部太平洋的洋流变化,以便更全面地完善对中中新世气候转型的理解。
中中新世气候转型(14.2~13.9 Ma)是全球联动的一个快速气候变化事件,冰盖、洋流和碳循环均发生显著变化,厘清其驱动机制对理解新生代全球变冷有重要意义。对此已有研究提出2种假说:一种重视洋流重组,另一种则突出碳循环的重要性,但二者都无法完美解释中中新世气候转型的种种现象。实际上,冰盖—洋流—碳循环三者形成耦合的系统,共同造成地球气候变化。综合已有的地质记录,两类机制均导致深部大洋碳储库增大,大气p CO2降低,并进一步促进气候变冷和冰盖增长,表明不同子系统之间的耦合作用引起气候突变。相较于碳循环过程和冰盖变化,学术界对中中新世气候转型期间洋流变化的了解较少,特别是南大洋和太平洋深部水团。未来的研究应聚焦于深部太平洋的洋流变化,以便更全面地完善对中中新世气候转型的理解。
中中新世气候转型(14.2~13.9 Ma)是全球联动的一个快速气候变化事件,冰盖、洋流和碳循环均发生显著变化,厘清其驱动机制对理解新生代全球变冷有重要意义。对此已有研究提出2种假说:一种重视洋流重组,另一种则突出碳循环的重要性,但二者都无法完美解释中中新世气候转型的种种现象。实际上,冰盖—洋流—碳循环三者形成耦合的系统,共同造成地球气候变化。综合已有的地质记录,两类机制均导致深部大洋碳储库增大,大气p CO2降低,并进一步促进气候变冷和冰盖增长,表明不同子系统之间的耦合作用引起气候突变。相较于碳循环过程和冰盖变化,学术界对中中新世气候转型期间洋流变化的了解较少,特别是南大洋和太平洋深部水团。未来的研究应聚焦于深部太平洋的洋流变化,以便更全面地完善对中中新世气候转型的理解。
当前,南极冰盖的季节性消融与扩张影响着西风带的位置、西风的强度以及澳大利亚西南部的降水和陆表风化剥蚀.中新世是地球气候系统从温室向冰室过渡的重要时期,期间伴随着东南极冰盖的大规模消融与扩张以及最终永久性冰盖的形成,且当时的澳大利亚较现今更接近南极地区,进而使其成为研究大气圈、水圈、岩石圈和冰冻圈间耦合关系的理想靶区.基于对国际大洋发现计划369航次U1516站位沉积物碎屑态组分物质堆积速率、粒度、黏土矿物和元素组成的综合性测试分析,我们重建了中新世构造时间尺度上澳大利亚西南部的陆表风化剥蚀与气候演化历史:早、中中新世(22~12.7Ma)时澳大利亚西南部气候干燥,陆表风化作用弱,陆源物质向海洋的输送量小; 12.7~8Ma时澳大利亚西南部降水增多,陆表风化作用增强,河流入海量增加.这与前人在附近站位的研究结果非常一致,可能指示着:中中新世气候转型期(约14.8~12.8Ma)东南极冰盖扩张,南半球表层海水温度持续下降,促进了南极周边地区海冰的发育,使得西风带位置北移且西风强度增强,进而为澳大利亚西南部带来更多的降水.另外,我们还发现中新世南亚季风与西风带的演化同步,表明当时的南亚季风系...
当前,南极冰盖的季节性消融与扩张影响着西风带的位置、西风的强度以及澳大利亚西南部的降水和陆表风化剥蚀.中新世是地球气候系统从温室向冰室过渡的重要时期,期间伴随着东南极冰盖的大规模消融与扩张以及最终永久性冰盖的形成,且当时的澳大利亚较现今更接近南极地区,进而使其成为研究大气圈、水圈、岩石圈和冰冻圈间耦合关系的理想靶区.基于对国际大洋发现计划369航次U1516站位沉积物碎屑态组分物质堆积速率、粒度、黏土矿物和元素组成的综合性测试分析,我们重建了中新世构造时间尺度上澳大利亚西南部的陆表风化剥蚀与气候演化历史:早、中中新世(22~12.7Ma)时澳大利亚西南部气候干燥,陆表风化作用弱,陆源物质向海洋的输送量小; 12.7~8Ma时澳大利亚西南部降水增多,陆表风化作用增强,河流入海量增加.这与前人在附近站位的研究结果非常一致,可能指示着:中中新世气候转型期(约14.8~12.8Ma)东南极冰盖扩张,南半球表层海水温度持续下降,促进了南极周边地区海冰的发育,使得西风带位置北移且西风强度增强,进而为澳大利亚西南部带来更多的降水.另外,我们还发现中新世南亚季风与西风带的演化同步,表明当时的南亚季风系...
当前,南极冰盖的季节性消融与扩张影响着西风带的位置、西风的强度以及澳大利亚西南部的降水和陆表风化剥蚀.中新世是地球气候系统从温室向冰室过渡的重要时期,期间伴随着东南极冰盖的大规模消融与扩张以及最终永久性冰盖的形成,且当时的澳大利亚较现今更接近南极地区,进而使其成为研究大气圈、水圈、岩石圈和冰冻圈间耦合关系的理想靶区.基于对国际大洋发现计划369航次U1516站位沉积物碎屑态组分物质堆积速率、粒度、黏土矿物和元素组成的综合性测试分析,我们重建了中新世构造时间尺度上澳大利亚西南部的陆表风化剥蚀与气候演化历史:早、中中新世(22~12.7Ma)时澳大利亚西南部气候干燥,陆表风化作用弱,陆源物质向海洋的输送量小; 12.7~8Ma时澳大利亚西南部降水增多,陆表风化作用增强,河流入海量增加.这与前人在附近站位的研究结果非常一致,可能指示着:中中新世气候转型期(约14.8~12.8Ma)东南极冰盖扩张,南半球表层海水温度持续下降,促进了南极周边地区海冰的发育,使得西风带位置北移且西风强度增强,进而为澳大利亚西南部带来更多的降水.另外,我们还发现中新世南亚季风与西风带的演化同步,表明当时的南亚季风系...
晚中新世托尔通期(11.61~7.25 Ma)比现代更加温暖和潮湿,却有着与工业革命前相近的大气二氧化碳分压,这种低大气二氧化碳分压下的暖室气候在整个新生代都很特殊,搞清其驱动机制有助于预测未来气候变化。对此有两种解释:基于指标记录的晚中新世气候—二氧化碳分压“解耦假说”和基于数值模拟的“协同作用假说”。指标重建的地质记录表明晚中新世的气候可能并不受二氧化碳分压影响,即气候与二氧化碳分压发生解耦。数值模拟表明晚中新世异于现代的植被分布和地形构造等,很可能促成晚中新世全球温度的升高。但数值模拟很难充分模拟出晚中新世的升温幅度和模式。对晚中新世开展准确且高分辨率的二氧化碳分压重建是未来指标重建工作的重点,而植被反馈、云反馈、水蒸汽反馈和土壤性质是影响晚中新世暖室气候的主要因素,未来的数值模拟工作应朝这些方向推进。
晚中新世托尔通期(11.61~7.25 Ma)比现代更加温暖和潮湿,却有着与工业革命前相近的大气二氧化碳分压,这种低大气二氧化碳分压下的暖室气候在整个新生代都很特殊,搞清其驱动机制有助于预测未来气候变化。对此有两种解释:基于指标记录的晚中新世气候—二氧化碳分压“解耦假说”和基于数值模拟的“协同作用假说”。指标重建的地质记录表明晚中新世的气候可能并不受二氧化碳分压影响,即气候与二氧化碳分压发生解耦。数值模拟表明晚中新世异于现代的植被分布和地形构造等,很可能促成晚中新世全球温度的升高。但数值模拟很难充分模拟出晚中新世的升温幅度和模式。对晚中新世开展准确且高分辨率的二氧化碳分压重建是未来指标重建工作的重点,而植被反馈、云反馈、水蒸汽反馈和土壤性质是影响晚中新世暖室气候的主要因素,未来的数值模拟工作应朝这些方向推进。
晚中新世托尔通期(11.61~7.25 Ma)比现代更加温暖和潮湿,却有着与工业革命前相近的大气二氧化碳分压,这种低大气二氧化碳分压下的暖室气候在整个新生代都很特殊,搞清其驱动机制有助于预测未来气候变化。对此有两种解释:基于指标记录的晚中新世气候—二氧化碳分压“解耦假说”和基于数值模拟的“协同作用假说”。指标重建的地质记录表明晚中新世的气候可能并不受二氧化碳分压影响,即气候与二氧化碳分压发生解耦。数值模拟表明晚中新世异于现代的植被分布和地形构造等,很可能促成晚中新世全球温度的升高。但数值模拟很难充分模拟出晚中新世的升温幅度和模式。对晚中新世开展准确且高分辨率的二氧化碳分压重建是未来指标重建工作的重点,而植被反馈、云反馈、水蒸汽反馈和土壤性质是影响晚中新世暖室气候的主要因素,未来的数值模拟工作应朝这些方向推进。