本文旨在解决铁路路基在冬季低温状态下反复冻胀的难题,依托准池铁路K44+970—K45+020冻害路段,进行针对季节性冻土地区铁路路基人工供热防冻胀技术的实地应用研究。设计了路基分布式供热系统,并在现场建设一个长度为20 m的试验段。文章详细介绍了施工步骤和运行控制方案,并建立了温度和变形自动监测系统。监测结果表明,热泵输出温度可在50℃以上,运行性能稳定。路基冻胀量由9.4 mm降低至±3 mm,消除了路基冻胀变形对线路平顺性的影响。
本文旨在解决铁路路基在冬季低温状态下反复冻胀的难题,依托准池铁路K44+970—K45+020冻害路段,进行针对季节性冻土地区铁路路基人工供热防冻胀技术的实地应用研究。设计了路基分布式供热系统,并在现场建设一个长度为20 m的试验段。文章详细介绍了施工步骤和运行控制方案,并建立了温度和变形自动监测系统。监测结果表明,热泵输出温度可在50℃以上,运行性能稳定。路基冻胀量由9.4 mm降低至±3 mm,消除了路基冻胀变形对线路平顺性的影响。
本文旨在解决铁路路基在冬季低温状态下反复冻胀的难题,依托准池铁路K44+970—K45+020冻害路段,进行针对季节性冻土地区铁路路基人工供热防冻胀技术的实地应用研究。设计了路基分布式供热系统,并在现场建设一个长度为20 m的试验段。文章详细介绍了施工步骤和运行控制方案,并建立了温度和变形自动监测系统。监测结果表明,热泵输出温度可在50℃以上,运行性能稳定。路基冻胀量由9.4 mm降低至±3 mm,消除了路基冻胀变形对线路平顺性的影响。
针对寒区路基冻胀病害,提出1种利用地温能的主动供热方法。采用地源热泵技术,设计1款路基专用热调控系统及分布式供热方案。搭建足尺路基试验平台,并制作与安装实体热调控系统,测试其在冬季的供热性能和路基热学调控机制。试验表明:在启停比2h∶1h运行模式下,热调控系统可以输出17~33℃的供热温度,在冬季寒冷天气下的运行性能稳定;集热温度范围为-18~-8℃,能够高效收集地温能。供热段向路基的热扩散过程具有空间滞后性,竖向升温效应可以在4d内扩散至整个基床表层,升温幅度随着与供热段距离或时间的增大而逐渐减小。路基纵向升温效应在第4d时的扩散距离为125cm。供热段的倾斜布置形式有助于平衡路肩和路基中心的冻结差异,防止不均匀冻胀。路基冻结深度变化受到大气环境和热调控系统的双重控制,供热16d后冻结深度由74cm降低至17cm以内。热调控系统制热系数可达5.8以上,但随着运行时间的延长而减小。建议路基采用人工供热和保温措施相结合的复合热防护方案。
针对寒区路基冻胀病害,提出1种利用地温能的主动供热方法。采用地源热泵技术,设计1款路基专用热调控系统及分布式供热方案。搭建足尺路基试验平台,并制作与安装实体热调控系统,测试其在冬季的供热性能和路基热学调控机制。试验表明:在启停比2h∶1h运行模式下,热调控系统可以输出17~33℃的供热温度,在冬季寒冷天气下的运行性能稳定;集热温度范围为-18~-8℃,能够高效收集地温能。供热段向路基的热扩散过程具有空间滞后性,竖向升温效应可以在4d内扩散至整个基床表层,升温幅度随着与供热段距离或时间的增大而逐渐减小。路基纵向升温效应在第4d时的扩散距离为125cm。供热段的倾斜布置形式有助于平衡路肩和路基中心的冻结差异,防止不均匀冻胀。路基冻结深度变化受到大气环境和热调控系统的双重控制,供热16d后冻结深度由74cm降低至17cm以内。热调控系统制热系数可达5.8以上,但随着运行时间的延长而减小。建议路基采用人工供热和保温措施相结合的复合热防护方案。