为了合理分析多冷媒非均质人工冻结壁的力学特性,将冻结壁视为弹性模量和粘聚力随半径呈线性变化的功能梯度材料,并通过引入冻胀系数n来反映冻结壁的冻胀特性,基于不同屈服准则分别推导得出考虑冻胀特性的多冷媒非均质人工冻结壁弹塑性状态下的应力、位移以及塑性区相对半径的隐式方程。计算结果表明:在考虑非均质特性后,基于M-C、D-P、广义Tresca以及双剪统一强度准则计算得出冻结壁的弹性极限承载力分别降低4.01%、4.02%、3.19%、2.57%,而塑性极限承载力分别提高8.13%、8.13%、8.04%、7.95%;进一步考虑冻胀特性后,基于四种屈服准则计算得出非均质冻结壁的弹性极限承载力分别提高6.91%、6.92%、5.93%、5.19%。以M-C准则为例,考虑冻胀特性后,当冻结壁处于弹性极限状态(rc=1)时,非均质冻结壁内、外缘位移分别增加3.850 cm和17.159 cm;当冻结壁处于弹塑性状态(rc=1.2)时,非均质冻结壁内、外缘位移分别增加5.544 cm和16.024 cm;当塑性区相对半径1≤rc≤1.2...
为了合理分析多冷媒非均质人工冻结壁的力学特性,将冻结壁视为弹性模量和粘聚力随半径呈线性变化的功能梯度材料,并通过引入冻胀系数n来反映冻结壁的冻胀特性,基于不同屈服准则分别推导得出考虑冻胀特性的多冷媒非均质人工冻结壁弹塑性状态下的应力、位移以及塑性区相对半径的隐式方程。计算结果表明:在考虑非均质特性后,基于M-C、D-P、广义Tresca以及双剪统一强度准则计算得出冻结壁的弹性极限承载力分别降低4.01%、4.02%、3.19%、2.57%,而塑性极限承载力分别提高8.13%、8.13%、8.04%、7.95%;进一步考虑冻胀特性后,基于四种屈服准则计算得出非均质冻结壁的弹性极限承载力分别提高6.91%、6.92%、5.93%、5.19%。以M-C准则为例,考虑冻胀特性后,当冻结壁处于弹性极限状态(rc=1)时,非均质冻结壁内、外缘位移分别增加3.850 cm和17.159 cm;当冻结壁处于弹塑性状态(rc=1.2)时,非均质冻结壁内、外缘位移分别增加5.544 cm和16.024 cm;当塑性区相对半径1≤rc≤1.2...
为了合理分析多冷媒非均质人工冻结壁的力学特性,将冻结壁视为弹性模量和粘聚力随半径呈线性变化的功能梯度材料,并通过引入冻胀系数n来反映冻结壁的冻胀特性,基于不同屈服准则分别推导得出考虑冻胀特性的多冷媒非均质人工冻结壁弹塑性状态下的应力、位移以及塑性区相对半径的隐式方程。计算结果表明:在考虑非均质特性后,基于M-C、D-P、广义Tresca以及双剪统一强度准则计算得出冻结壁的弹性极限承载力分别降低4.01%、4.02%、3.19%、2.57%,而塑性极限承载力分别提高8.13%、8.13%、8.04%、7.95%;进一步考虑冻胀特性后,基于四种屈服准则计算得出非均质冻结壁的弹性极限承载力分别提高6.91%、6.92%、5.93%、5.19%。以M-C准则为例,考虑冻胀特性后,当冻结壁处于弹性极限状态(rc=1)时,非均质冻结壁内、外缘位移分别增加3.850 cm和17.159 cm;当冻结壁处于弹塑性状态(rc=1.2)时,非均质冻结壁内、外缘位移分别增加5.544 cm和16.024 cm;当塑性区相对半径1≤rc≤1.2...
为了合理分析多冷媒非均质人工冻结壁的力学特性,将冻结壁视为弹性模量和粘聚力随半径呈线性变化的功能梯度材料,并通过引入冻胀系数n来反映冻结壁的冻胀特性,基于不同屈服准则分别推导得出考虑冻胀特性的多冷媒非均质人工冻结壁弹塑性状态下的应力、位移以及塑性区相对半径的隐式方程。计算结果表明:在考虑非均质特性后,基于M-C、D-P、广义Tresca以及双剪统一强度准则计算得出冻结壁的弹性极限承载力分别降低4.01%、4.02%、3.19%、2.57%,而塑性极限承载力分别提高8.13%、8.13%、8.04%、7.95%;进一步考虑冻胀特性后,基于四种屈服准则计算得出非均质冻结壁的弹性极限承载力分别提高6.91%、6.92%、5.93%、5.19%。以M-C准则为例,考虑冻胀特性后,当冻结壁处于弹性极限状态(rc=1)时,非均质冻结壁内、外缘位移分别增加3.850 cm和17.159 cm;当冻结壁处于弹塑性状态(rc=1.2)时,非均质冻结壁内、外缘位移分别增加5.544 cm和16.024 cm;当塑性区相对半径1≤rc≤1.2...
人工地层冻结法的实施会引起地层的冻胀,为了探究富水砂卵石地层冻胀特性及其对既有结构的扰动,首先阐述了土体冻胀的本质和温度与结构应力应变之间的关系,并依托洛阳轨道交通1号线塔湾站-史家湾站区间联络通道工程建立三维热力耦合数值模型,对砂卵石地层冻结期间的地层冻胀变化和既有隧道变形受力进行了数值计算分析。结果表明:冻结管降温使得冻结管周围地层中的水分冻结,土体体积膨胀,进而使联络通道设计位置上方地表出现隆起,且距联络通道中心的水平距离越近,隆起变形值就越大。地层的冻胀对既有双线隧道造成扰动,隧道结构变形主要表现为拱顶隆起、拱底下沉、靠近联络通道一侧的拱腰向隧道内侧产生横向变形,同时联络通道设计开口位置附近的管片结构出现应力集中现象。在整个冻结过程中,冻结前期设计加固区域地层的降温速率和低温扩散速率较快,地层冻胀效应变化显著,而到冻结后期受冻结范围影响地层冻胀变形和既有隧道变形的增幅均有所减小。
人工地层冻结法的实施会引起地层的冻胀,为了探究富水砂卵石地层冻胀特性及其对既有结构的扰动,首先阐述了土体冻胀的本质和温度与结构应力应变之间的关系,并依托洛阳轨道交通1号线塔湾站-史家湾站区间联络通道工程建立三维热力耦合数值模型,对砂卵石地层冻结期间的地层冻胀变化和既有隧道变形受力进行了数值计算分析。结果表明:冻结管降温使得冻结管周围地层中的水分冻结,土体体积膨胀,进而使联络通道设计位置上方地表出现隆起,且距联络通道中心的水平距离越近,隆起变形值就越大。地层的冻胀对既有双线隧道造成扰动,隧道结构变形主要表现为拱顶隆起、拱底下沉、靠近联络通道一侧的拱腰向隧道内侧产生横向变形,同时联络通道设计开口位置附近的管片结构出现应力集中现象。在整个冻结过程中,冻结前期设计加固区域地层的降温速率和低温扩散速率较快,地层冻胀效应变化显著,而到冻结后期受冻结范围影响地层冻胀变形和既有隧道变形的增幅均有所减小。
人工地层冻结法的实施会引起地层的冻胀,为了探究富水砂卵石地层冻胀特性及其对既有结构的扰动,首先阐述了土体冻胀的本质和温度与结构应力应变之间的关系,并依托洛阳轨道交通1号线塔湾站-史家湾站区间联络通道工程建立三维热力耦合数值模型,对砂卵石地层冻结期间的地层冻胀变化和既有隧道变形受力进行了数值计算分析。结果表明:冻结管降温使得冻结管周围地层中的水分冻结,土体体积膨胀,进而使联络通道设计位置上方地表出现隆起,且距联络通道中心的水平距离越近,隆起变形值就越大。地层的冻胀对既有双线隧道造成扰动,隧道结构变形主要表现为拱顶隆起、拱底下沉、靠近联络通道一侧的拱腰向隧道内侧产生横向变形,同时联络通道设计开口位置附近的管片结构出现应力集中现象。在整个冻结过程中,冻结前期设计加固区域地层的降温速率和低温扩散速率较快,地层冻胀效应变化显著,而到冻结后期受冻结范围影响地层冻胀变形和既有隧道变形的增幅均有所减小。
提出将冻土帷幕演变过程的关键阶段细分,并计算冻土帷幕温度场冻结锋面和特征等温线坐标的冻土帷幕整体性状确定性分析方法,对冻结帷幕薄弱部位、特征及成因进行了研究。结果表明:联络通道冻结管单侧开孔和放射状布置形式,使得冻土帷幕局部区域的冻结壁厚度和平均温度存在薄弱点;辅助冻结侧的冻结壁厚度大于其设计值,平均温度较低,而主冻结侧的冻结壁厚度小于其设计值,平均温度较高;联络通道泵站下部冻结管相交区域冻结壁形成最晚,第II冻结壁厚度最薄;联络通道拱部与边墙的角部连接区域冻结壁交圈时间最长,辅助冻结侧边墙冻结管间距较大区域的冻土帷幕厚度最薄。冻结法施工时,测温孔位置和长度的设计应覆盖薄弱点,施工中应对薄弱点进行重点监控。
提出将冻土帷幕演变过程的关键阶段细分,并计算冻土帷幕温度场冻结锋面和特征等温线坐标的冻土帷幕整体性状确定性分析方法,对冻结帷幕薄弱部位、特征及成因进行了研究。结果表明:联络通道冻结管单侧开孔和放射状布置形式,使得冻土帷幕局部区域的冻结壁厚度和平均温度存在薄弱点;辅助冻结侧的冻结壁厚度大于其设计值,平均温度较低,而主冻结侧的冻结壁厚度小于其设计值,平均温度较高;联络通道泵站下部冻结管相交区域冻结壁形成最晚,第II冻结壁厚度最薄;联络通道拱部与边墙的角部连接区域冻结壁交圈时间最长,辅助冻结侧边墙冻结管间距较大区域的冻土帷幕厚度最薄。冻结法施工时,测温孔位置和长度的设计应覆盖薄弱点,施工中应对薄弱点进行重点监控。
提出将冻土帷幕演变过程的关键阶段细分,并计算冻土帷幕温度场冻结锋面和特征等温线坐标的冻土帷幕整体性状确定性分析方法,对冻结帷幕薄弱部位、特征及成因进行了研究。结果表明:联络通道冻结管单侧开孔和放射状布置形式,使得冻土帷幕局部区域的冻结壁厚度和平均温度存在薄弱点;辅助冻结侧的冻结壁厚度大于其设计值,平均温度较低,而主冻结侧的冻结壁厚度小于其设计值,平均温度较高;联络通道泵站下部冻结管相交区域冻结壁形成最晚,第II冻结壁厚度最薄;联络通道拱部与边墙的角部连接区域冻结壁交圈时间最长,辅助冻结侧边墙冻结管间距较大区域的冻土帷幕厚度最薄。冻结法施工时,测温孔位置和长度的设计应覆盖薄弱点,施工中应对薄弱点进行重点监控。