构建人工冻土BP神经网络本构模型,利用冻土三轴实验数据对神经网络模型进行训练,并2次开发有限元本构程序。用BP神经网络本构模型能很好的反映人工冻土非线性,人工冻土三轴数值模拟值和实验值误差在2.43%范围内。通过深井冻结工程数值模拟表明:人工冻土BP神经网络本构模型能较好的描述复杂应力路径变形特征,数值结果和现场实测规律一致,且和实测位移误差在5.0%;应用BP神经网络冻土本构模型准确预测预报人工冻土帷幕应力场和变形场,为冻结工程设计与施工提供参考。
我国的北方大部分地区为典型的冻土区。冻土因为含有不稳定的冰,其结构性能极不稳定,一旦外界季节温度发生变化,建立在冻土基础上的建筑就极易发生冻胀和沉降现象,极大地影响建筑的安全性能,给人们造成很大的损失。为了提高建设在冻土基础上的工程建筑各项性能,需要针对冻土的特性,深入分析冻土内水分的冻结和融化对土壤各项性能和指标的影响。
该文利用人工神经网络的BP模型建立了具有类似普通Kriging(OK)法和条件模拟(CS)运算目标的人工神经Kriging(NK)方法,在黄河河套平原进行了耕地和盐荒地初冻期、最大冻深期和融通期土壤水盐时空变异性的模拟和估值,通过NK法与OK法、CS法模拟、估值、检验结果及3种方法的理论变异函数、统计参数与实验变异函数的对比,结果表明NK法在消除滑动平均影响方面优于OK法,并以类似于CS法的空间变异性进行模拟,而且NK法有自身独特的优点,它不需要协方差函数的估计和变异函数的推求,对于含有一定特异值和一维到三维空间的扩展有更强的适应性,是对空间变异性应用研究方法的一种补充,同时拓宽了ANN的应用领域,具学科融合的优势。