为了研究道岔融雪的基本原理,解决电加热道岔融雪系统热效率低、融雪不充分、电加热元件故障率高等问题,以60 kg/m钢轨12号道岔为研究对象,基于MATLAB和COMSOL分析软件构建出“道岔尖轨结构-电加热元件-积雪-空气”的融雪模型。将融雪模型分为无积雪的一般情况和有积雪的极端情况,按照现场环境数据和参数进行模型仿真,将一般情况的仿真结果与现场实验收集的轨温数据进行对比,并模拟极端情况下原电加热元件的融雪效果,对温度分布,轨温变化和积雪融化程度进行分析。研究结果表明:通过对道岔尖轨轨腰加热方式进行建模,融雪模型与现场数据有较好的拟合度,温度差在±2℃内,相对误差保持在7%以内,验证了模型的可靠性。一般情况下,系统首次加热需要40 min左右将钢轨加热至目标温度,电加热元件冷却后再次加热至目标温度需要25 min左右。极端情况下,使用与一般情况首次加热的相同条件,此时轨温上升较为缓慢,与目标温度相差10℃左右,积雪相变程度在0.3以下,不能达到融雪的目的。极端情况下增加无积雪的对照组进行轨温模拟,积雪是影响轨温变化的主要因素。依据现场条件对道岔尖轨完成了传热模型构建,并验证了模型的准确...
为了研究道岔融雪的基本原理,解决电加热道岔融雪系统热效率低、融雪不充分、电加热元件故障率高等问题,以60 kg/m钢轨12号道岔为研究对象,基于MATLAB和COMSOL分析软件构建出“道岔尖轨结构-电加热元件-积雪-空气”的融雪模型。将融雪模型分为无积雪的一般情况和有积雪的极端情况,按照现场环境数据和参数进行模型仿真,将一般情况的仿真结果与现场实验收集的轨温数据进行对比,并模拟极端情况下原电加热元件的融雪效果,对温度分布,轨温变化和积雪融化程度进行分析。研究结果表明:通过对道岔尖轨轨腰加热方式进行建模,融雪模型与现场数据有较好的拟合度,温度差在±2℃内,相对误差保持在7%以内,验证了模型的可靠性。一般情况下,系统首次加热需要40 min左右将钢轨加热至目标温度,电加热元件冷却后再次加热至目标温度需要25 min左右。极端情况下,使用与一般情况首次加热的相同条件,此时轨温上升较为缓慢,与目标温度相差10℃左右,积雪相变程度在0.3以下,不能达到融雪的目的。极端情况下增加无积雪的对照组进行轨温模拟,积雪是影响轨温变化的主要因素。依据现场条件对道岔尖轨完成了传热模型构建,并验证了模型的准确...
为了研究道岔融雪的基本原理,解决电加热道岔融雪系统热效率低、融雪不充分、电加热元件故障率高等问题,以60 kg/m钢轨12号道岔为研究对象,基于MATLAB和COMSOL分析软件构建出“道岔尖轨结构-电加热元件-积雪-空气”的融雪模型。将融雪模型分为无积雪的一般情况和有积雪的极端情况,按照现场环境数据和参数进行模型仿真,将一般情况的仿真结果与现场实验收集的轨温数据进行对比,并模拟极端情况下原电加热元件的融雪效果,对温度分布,轨温变化和积雪融化程度进行分析。研究结果表明:通过对道岔尖轨轨腰加热方式进行建模,融雪模型与现场数据有较好的拟合度,温度差在±2℃内,相对误差保持在7%以内,验证了模型的可靠性。一般情况下,系统首次加热需要40 min左右将钢轨加热至目标温度,电加热元件冷却后再次加热至目标温度需要25 min左右。极端情况下,使用与一般情况首次加热的相同条件,此时轨温上升较为缓慢,与目标温度相差10℃左右,积雪相变程度在0.3以下,不能达到融雪的目的。极端情况下增加无积雪的对照组进行轨温模拟,积雪是影响轨温变化的主要因素。依据现场条件对道岔尖轨完成了传热模型构建,并验证了模型的准确...
为解决电加热道岔融雪系统在工程应用中融雪不及时、不充分的问题,以60 kg/m钢轨轨型的道岔结构为研究对象,基于COMSOL Multiphysics有限元分析软件建立道岔结构“热源-钢轨-积雪”的耦合传热模型,通过仿真试验与现场试验,验证传热模型的准确性,并对比分析加热元件采用无接触安装方式与常规轨腰安装方式的温度分布和融雪效果。结果表明:(1)加热元件采用无接触安装方式较轨腰安装方式具有更好的融雪效果,加热元件工作1 h,无接触安装方式基本轨与尖轨间隙积雪域水的体积分数为0.92,高于轨腰安装方式水的体积分数0.79,能量利用率较轨腰安装方式提高16.5%;(2)无接触安装方式道岔结构的温度分布更加均匀,基本轨与尖轨间隙积雪域温度分布在0℃以下的区域更小,能量传递效率更高。
为解决电加热道岔融雪系统在工程应用中融雪不及时、不充分的问题,以60 kg/m钢轨轨型的道岔结构为研究对象,基于COMSOL Multiphysics有限元分析软件建立道岔结构“热源-钢轨-积雪”的耦合传热模型,通过仿真试验与现场试验,验证传热模型的准确性,并对比分析加热元件采用无接触安装方式与常规轨腰安装方式的温度分布和融雪效果。结果表明:(1)加热元件采用无接触安装方式较轨腰安装方式具有更好的融雪效果,加热元件工作1 h,无接触安装方式基本轨与尖轨间隙积雪域水的体积分数为0.92,高于轨腰安装方式水的体积分数0.79,能量利用率较轨腰安装方式提高16.5%;(2)无接触安装方式道岔结构的温度分布更加均匀,基本轨与尖轨间隙积雪域温度分布在0℃以下的区域更小,能量传递效率更高。
为解决电加热道岔融雪系统在工程应用中融雪不及时、不充分的问题,以60 kg/m钢轨轨型的道岔结构为研究对象,基于COMSOL Multiphysics有限元分析软件建立道岔结构“热源-钢轨-积雪”的耦合传热模型,通过仿真试验与现场试验,验证传热模型的准确性,并对比分析加热元件采用无接触安装方式与常规轨腰安装方式的温度分布和融雪效果。结果表明:(1)加热元件采用无接触安装方式较轨腰安装方式具有更好的融雪效果,加热元件工作1 h,无接触安装方式基本轨与尖轨间隙积雪域水的体积分数为0.92,高于轨腰安装方式水的体积分数0.79,能量利用率较轨腰安装方式提高16.5%;(2)无接触安装方式道岔结构的温度分布更加均匀,基本轨与尖轨间隙积雪域温度分布在0℃以下的区域更小,能量传递效率更高。
为探讨热管最佳工况,搭建了适用于多年冻土区的氨-钢热管试验台。通过监测热管内部轴向、外壁的温度分布以及外壁面的热流密度变化,在负温条件下开展了不同充液率(20%、30%、40%)和倾角(10°、30°、50°、70°、90°)对热管传热性能影响的试验。试验结果表明:在三种充液率下,热管处于10°倾角时均温性最佳;充液率为30%和40%的热管倾角50°时总热阻最小、传热效率最高,充液率为20%条件下热管的总热阻和传热效率在倾角30°时分别达到极小值和最高值。总体而言,充液率为30%的热管具有最佳传热表现。
为探讨热管最佳工况,搭建了适用于多年冻土区的氨-钢热管试验台。通过监测热管内部轴向、外壁的温度分布以及外壁面的热流密度变化,在负温条件下开展了不同充液率(20%、30%、40%)和倾角(10°、30°、50°、70°、90°)对热管传热性能影响的试验。试验结果表明:在三种充液率下,热管处于10°倾角时均温性最佳;充液率为30%和40%的热管倾角50°时总热阻最小、传热效率最高,充液率为20%条件下热管的总热阻和传热效率在倾角30°时分别达到极小值和最高值。总体而言,充液率为30%的热管具有最佳传热表现。
为探讨热管最佳工况,搭建了适用于多年冻土区的氨-钢热管试验台。通过监测热管内部轴向、外壁的温度分布以及外壁面的热流密度变化,在负温条件下开展了不同充液率(20%、30%、40%)和倾角(10°、30°、50°、70°、90°)对热管传热性能影响的试验。试验结果表明:在三种充液率下,热管处于10°倾角时均温性最佳;充液率为30%和40%的热管倾角50°时总热阻最小、传热效率最高,充液率为20%条件下热管的总热阻和传热效率在倾角30°时分别达到极小值和最高值。总体而言,充液率为30%的热管具有最佳传热表现。
为探讨热管最佳工况,搭建了适用于多年冻土区的氨-钢热管试验台。通过监测热管内部轴向、外壁的温度分布以及外壁面的热流密度变化,在负温条件下开展了不同充液率(20%、30%、40%)和倾角(10°、30°、50°、70°、90°)对热管传热性能影响的试验。试验结果表明:在三种充液率下,热管处于10°倾角时均温性最佳;充液率为30%和40%的热管倾角50°时总热阻最小、传热效率最高,充液率为20%条件下热管的总热阻和传热效率在倾角30°时分别达到极小值和最高值。总体而言,充液率为30%的热管具有最佳传热表现。