针对季节性冻土区路基冻害问题,提出引入人工供热技术,构建新型主动供热式路基。在对比各类热源技术特征与资源条件的基础上,设计与制作一款路基专用地源热泵型供热装置。装置采用直接膨胀式换热形式,换热器为小直径螺旋盘管,便于机械化钻孔布设与"孤岛"运行,通过模型试验研究其制热性能及能效性影响规律。结果表明,季节性冻土区的地热能利用具有良好的技术性和资源性条件,装置在冬季的供热温度可达50℃以上,吸热温度可达-10℃以下。土体热扩散率与升温幅度随着与热泵距离的增大而减小,日均有效制热系数(COP)先增大、后减小,最大COP可达4.16。热泵制热性能受到供热段土体温度的显著影响,环境温度对其影响不显著,供热性能稳定。面向单线铁路路基快速解冻抢险时,建议热泵布置间距取1.5 m~3.0 m,供热容量宜设计为0.6 kW~1.8 kW,长期运行时应合理控制启停时间比例与供热温度水平。
针对季节性冻土区路基冻害问题,提出引入人工供热技术,构建新型主动供热式路基。在对比各类热源技术特征与资源条件的基础上,设计与制作一款路基专用地源热泵型供热装置。装置采用直接膨胀式换热形式,换热器为小直径螺旋盘管,便于机械化钻孔布设与"孤岛"运行,通过模型试验研究其制热性能及能效性影响规律。结果表明,季节性冻土区的地热能利用具有良好的技术性和资源性条件,装置在冬季的供热温度可达50℃以上,吸热温度可达-10℃以下。土体热扩散率与升温幅度随着与热泵距离的增大而减小,日均有效制热系数(COP)先增大、后减小,最大COP可达4.16。热泵制热性能受到供热段土体温度的显著影响,环境温度对其影响不显著,供热性能稳定。面向单线铁路路基快速解冻抢险时,建议热泵布置间距取1.5 m~3.0 m,供热容量宜设计为0.6 kW~1.8 kW,长期运行时应合理控制启停时间比例与供热温度水平。
针对季节性冻土区路基冻害问题,提出引入人工供热技术,构建新型主动供热式路基。在对比各类热源技术特征与资源条件的基础上,设计与制作一款路基专用地源热泵型供热装置。装置采用直接膨胀式换热形式,换热器为小直径螺旋盘管,便于机械化钻孔布设与"孤岛"运行,通过模型试验研究其制热性能及能效性影响规律。结果表明,季节性冻土区的地热能利用具有良好的技术性和资源性条件,装置在冬季的供热温度可达50℃以上,吸热温度可达-10℃以下。土体热扩散率与升温幅度随着与热泵距离的增大而减小,日均有效制热系数(COP)先增大、后减小,最大COP可达4.16。热泵制热性能受到供热段土体温度的显著影响,环境温度对其影响不显著,供热性能稳定。面向单线铁路路基快速解冻抢险时,建议热泵布置间距取1.5 m~3.0 m,供热容量宜设计为0.6 kW~1.8 kW,长期运行时应合理控制启停时间比例与供热温度水平。
针对路基的冻胀现象,结合可再生能源利用技术,提出一种更具实时性和有效性的路基防冻胀方法,即路基主动供热方法。基于太阳能和浅层地热能的资源性条件,设计了分别采用这2种可再生能源作为热源的路基专用供热系统,制作了样品并进行了性能验证试验。结果表明:采用可再生能源作为热源的路基供热方法可在冬季主动向路基输入热量来实时防控由气候引起的过冷状态;太阳能真空管集热技术和地源热泵技术具有小型化、高效化等有利于路基应用的优势,冻土区丰富的太阳能资源和浅层地热能资源可以解决热源的分散供应问题。所设计的2种路基专用供热系统均为小型集成化系统,适合采用分布式"孤岛"运行方式,路基专用太阳能供热系统的日均供热温度可达20~40℃,路基专用地源热泵系统可以自动化提供30℃、45℃、60℃等不同水平的日均供热温度,均可满足路基防冻胀要求。可再生能源供热技术可以为解决冻土区路基防冻胀问题提供一种新途径。
针对路基的冻胀现象,结合可再生能源利用技术,提出一种更具实时性和有效性的路基防冻胀方法,即路基主动供热方法。基于太阳能和浅层地热能的资源性条件,设计了分别采用这2种可再生能源作为热源的路基专用供热系统,制作了样品并进行了性能验证试验。结果表明:采用可再生能源作为热源的路基供热方法可在冬季主动向路基输入热量来实时防控由气候引起的过冷状态;太阳能真空管集热技术和地源热泵技术具有小型化、高效化等有利于路基应用的优势,冻土区丰富的太阳能资源和浅层地热能资源可以解决热源的分散供应问题。所设计的2种路基专用供热系统均为小型集成化系统,适合采用分布式"孤岛"运行方式,路基专用太阳能供热系统的日均供热温度可达20~40℃,路基专用地源热泵系统可以自动化提供30℃、45℃、60℃等不同水平的日均供热温度,均可满足路基防冻胀要求。可再生能源供热技术可以为解决冻土区路基防冻胀问题提供一种新途径。
针对路基的冻胀现象,结合可再生能源利用技术,提出一种更具实时性和有效性的路基防冻胀方法,即路基主动供热方法。基于太阳能和浅层地热能的资源性条件,设计了分别采用这2种可再生能源作为热源的路基专用供热系统,制作了样品并进行了性能验证试验。结果表明:采用可再生能源作为热源的路基供热方法可在冬季主动向路基输入热量来实时防控由气候引起的过冷状态;太阳能真空管集热技术和地源热泵技术具有小型化、高效化等有利于路基应用的优势,冻土区丰富的太阳能资源和浅层地热能资源可以解决热源的分散供应问题。所设计的2种路基专用供热系统均为小型集成化系统,适合采用分布式"孤岛"运行方式,路基专用太阳能供热系统的日均供热温度可达20~40℃,路基专用地源热泵系统可以自动化提供30℃、45℃、60℃等不同水平的日均供热温度,均可满足路基防冻胀要求。可再生能源供热技术可以为解决冻土区路基防冻胀问题提供一种新途径。