共检索到 18

路基冻胀是冻土地区铁路运营的顽疾,在防排水、土质改良和保温等措施难以消除冻胀的情况下,人工供热是一种备选方案。依托准池铁路K44+970—K45+020冻害路段,设计基于地源热泵的分布式供热方案,建设1个长度为20 m的现场试验段。在2021—2022年冬季开展1个冻融周期的供热试验,基于监测数据对热泵换热温度、路基温度场、冻结深度、轨道变形量等指标进行分析。研究结果表明:热泵的供热温度可达50℃以上,热源品位高且供热量稳定。供热试验段内路基冻结范围和温度极值比天然工况显著减小,线路中心处最大冻结深度由148 cm减小为88 cm,冻结锋面保持在地下水毛细迁移高度以上。试验段路基横向冻结深度差值由天然条件的49 cm减小为13 cm,有利于消除横向冻胀差异引起的水平不平顺。试验段纵向上的冻结深度差值基本控制在20 cm以内,可以避免次生高低不平顺。天然路基呈先发育深层冻胀、后在降雪融水入渗时发育浅层冻胀的规律,最大冻胀量达9.4 mm。试验段内路基未发育深层冻胀,且浅层冻胀量得到有效控制,轨道变形量控制在±3 mm以内,没有超出作业验收管理值,有效缓解了试验段冻害问题。

期刊论文 2023-12-16

路基冻胀是冻土地区铁路运营的顽疾,在防排水、土质改良和保温等措施难以消除冻胀的情况下,人工供热是一种备选方案。依托准池铁路K44+970—K45+020冻害路段,设计基于地源热泵的分布式供热方案,建设1个长度为20 m的现场试验段。在2021—2022年冬季开展1个冻融周期的供热试验,基于监测数据对热泵换热温度、路基温度场、冻结深度、轨道变形量等指标进行分析。研究结果表明:热泵的供热温度可达50℃以上,热源品位高且供热量稳定。供热试验段内路基冻结范围和温度极值比天然工况显著减小,线路中心处最大冻结深度由148 cm减小为88 cm,冻结锋面保持在地下水毛细迁移高度以上。试验段路基横向冻结深度差值由天然条件的49 cm减小为13 cm,有利于消除横向冻胀差异引起的水平不平顺。试验段纵向上的冻结深度差值基本控制在20 cm以内,可以避免次生高低不平顺。天然路基呈先发育深层冻胀、后在降雪融水入渗时发育浅层冻胀的规律,最大冻胀量达9.4 mm。试验段内路基未发育深层冻胀,且浅层冻胀量得到有效控制,轨道变形量控制在±3 mm以内,没有超出作业验收管理值,有效缓解了试验段冻害问题。

期刊论文 2023-12-16

路基冻胀是冻土地区铁路运营的顽疾,在防排水、土质改良和保温等措施难以消除冻胀的情况下,人工供热是一种备选方案。依托准池铁路K44+970—K45+020冻害路段,设计基于地源热泵的分布式供热方案,建设1个长度为20 m的现场试验段。在2021—2022年冬季开展1个冻融周期的供热试验,基于监测数据对热泵换热温度、路基温度场、冻结深度、轨道变形量等指标进行分析。研究结果表明:热泵的供热温度可达50℃以上,热源品位高且供热量稳定。供热试验段内路基冻结范围和温度极值比天然工况显著减小,线路中心处最大冻结深度由148 cm减小为88 cm,冻结锋面保持在地下水毛细迁移高度以上。试验段路基横向冻结深度差值由天然条件的49 cm减小为13 cm,有利于消除横向冻胀差异引起的水平不平顺。试验段纵向上的冻结深度差值基本控制在20 cm以内,可以避免次生高低不平顺。天然路基呈先发育深层冻胀、后在降雪融水入渗时发育浅层冻胀的规律,最大冻胀量达9.4 mm。试验段内路基未发育深层冻胀,且浅层冻胀量得到有效控制,轨道变形量控制在±3 mm以内,没有超出作业验收管理值,有效缓解了试验段冻害问题。

期刊论文 2023-12-16

针对寒区路基冻胀病害,提出1种利用地温能的主动供热方法。采用地源热泵技术,设计1款路基专用热调控系统及分布式供热方案。搭建足尺路基试验平台,并制作与安装实体热调控系统,测试其在冬季的供热性能和路基热学调控机制。试验表明:在启停比2h∶1h运行模式下,热调控系统可以输出17~33℃的供热温度,在冬季寒冷天气下的运行性能稳定;集热温度范围为-18~-8℃,能够高效收集地温能。供热段向路基的热扩散过程具有空间滞后性,竖向升温效应可以在4d内扩散至整个基床表层,升温幅度随着与供热段距离或时间的增大而逐渐减小。路基纵向升温效应在第4d时的扩散距离为125cm。供热段的倾斜布置形式有助于平衡路肩和路基中心的冻结差异,防止不均匀冻胀。路基冻结深度变化受到大气环境和热调控系统的双重控制,供热16d后冻结深度由74cm降低至17cm以内。热调控系统制热系数可达5.8以上,但随着运行时间的延长而减小。建议路基采用人工供热和保温措施相结合的复合热防护方案。

期刊论文 2023-10-12 DOI: 10.15951/j.tmgcxb.22050538

针对寒区路基冻胀病害,提出1种利用地温能的主动供热方法。采用地源热泵技术,设计1款路基专用热调控系统及分布式供热方案。搭建足尺路基试验平台,并制作与安装实体热调控系统,测试其在冬季的供热性能和路基热学调控机制。试验表明:在启停比2h∶1h运行模式下,热调控系统可以输出17~33℃的供热温度,在冬季寒冷天气下的运行性能稳定;集热温度范围为-18~-8℃,能够高效收集地温能。供热段向路基的热扩散过程具有空间滞后性,竖向升温效应可以在4d内扩散至整个基床表层,升温幅度随着与供热段距离或时间的增大而逐渐减小。路基纵向升温效应在第4d时的扩散距离为125cm。供热段的倾斜布置形式有助于平衡路肩和路基中心的冻结差异,防止不均匀冻胀。路基冻结深度变化受到大气环境和热调控系统的双重控制,供热16d后冻结深度由74cm降低至17cm以内。热调控系统制热系数可达5.8以上,但随着运行时间的延长而减小。建议路基采用人工供热和保温措施相结合的复合热防护方案。

期刊论文 2023-10-12 DOI: 10.15951/j.tmgcxb.22050538

针对寒区路基冻胀病害,提出1种利用地温能的主动供热方法。采用地源热泵技术,设计1款路基专用热调控系统及分布式供热方案。搭建足尺路基试验平台,并制作与安装实体热调控系统,测试其在冬季的供热性能和路基热学调控机制。试验表明:在启停比2h∶1h运行模式下,热调控系统可以输出17~33℃的供热温度,在冬季寒冷天气下的运行性能稳定;集热温度范围为-18~-8℃,能够高效收集地温能。供热段向路基的热扩散过程具有空间滞后性,竖向升温效应可以在4d内扩散至整个基床表层,升温幅度随着与供热段距离或时间的增大而逐渐减小。路基纵向升温效应在第4d时的扩散距离为125cm。供热段的倾斜布置形式有助于平衡路肩和路基中心的冻结差异,防止不均匀冻胀。路基冻结深度变化受到大气环境和热调控系统的双重控制,供热16d后冻结深度由74cm降低至17cm以内。热调控系统制热系数可达5.8以上,但随着运行时间的延长而减小。建议路基采用人工供热和保温措施相结合的复合热防护方案。

期刊论文 2023-10-12 DOI: 10.15951/j.tmgcxb.22050538

针对寒区铁路路基冻胀病害,提出一种基于地源热泵的供热系统及分布式方案,设计I级单线铁路的足尺半幅路基试验平台,对路基温度场进行监测与分析。定义供热系统的有效热影响半径为在一定时间内将路基冻结深度控制在有害临界值以内的纵向范围,并提出有效热影响半径的预测方法。结果表明:热泵系统的供热温度可达30℃以上,制热系数(COP)可达6.9,在寒冷气候下具有稳定的地温能转化性能与节能性。有效供热量和COP随着时间的延长而逐渐减小。土体升温幅度随着与热源距离的增大而降低,且路基竖向升温速率大于纵向。人工供热对寒潮天气影响具有显著的抑制作用,试验结束时供热系统两侧2.0和3.0 m范围的冻结深度控制分别在30和35 cm以内。有效热影响半径与供热时间和有害冻结深度均呈正比关系。当有害冻结深度为30,35,40 cm,供热5 d时的有效热影响半径分别为0.44,0.64,0.83 m;若热影响半径需达到1.5 m,所需供热时间分别为53,41,35 d。实际应用时应根据路基有害冻结深度和冻胀处置时间要求,合理设计供热系统沿线路的纵向布设间距,以保证供相邻供热系统的解冻范围在规定时间内交汇。

期刊论文 2023-05-16 DOI: 10.13722/j.cnki.jrme.2022.0562

针对寒区铁路路基冻胀病害,提出一种基于地源热泵的供热系统及分布式方案,设计I级单线铁路的足尺半幅路基试验平台,对路基温度场进行监测与分析。定义供热系统的有效热影响半径为在一定时间内将路基冻结深度控制在有害临界值以内的纵向范围,并提出有效热影响半径的预测方法。结果表明:热泵系统的供热温度可达30℃以上,制热系数(COP)可达6.9,在寒冷气候下具有稳定的地温能转化性能与节能性。有效供热量和COP随着时间的延长而逐渐减小。土体升温幅度随着与热源距离的增大而降低,且路基竖向升温速率大于纵向。人工供热对寒潮天气影响具有显著的抑制作用,试验结束时供热系统两侧2.0和3.0 m范围的冻结深度控制分别在30和35 cm以内。有效热影响半径与供热时间和有害冻结深度均呈正比关系。当有害冻结深度为30,35,40 cm,供热5 d时的有效热影响半径分别为0.44,0.64,0.83 m;若热影响半径需达到1.5 m,所需供热时间分别为53,41,35 d。实际应用时应根据路基有害冻结深度和冻胀处置时间要求,合理设计供热系统沿线路的纵向布设间距,以保证供相邻供热系统的解冻范围在规定时间内交汇。

期刊论文 2023-05-16 DOI: 10.13722/j.cnki.jrme.2022.0562

针对寒区铁路路基冻胀病害,提出一种基于地源热泵的供热系统及分布式方案,设计I级单线铁路的足尺半幅路基试验平台,对路基温度场进行监测与分析。定义供热系统的有效热影响半径为在一定时间内将路基冻结深度控制在有害临界值以内的纵向范围,并提出有效热影响半径的预测方法。结果表明:热泵系统的供热温度可达30℃以上,制热系数(COP)可达6.9,在寒冷气候下具有稳定的地温能转化性能与节能性。有效供热量和COP随着时间的延长而逐渐减小。土体升温幅度随着与热源距离的增大而降低,且路基竖向升温速率大于纵向。人工供热对寒潮天气影响具有显著的抑制作用,试验结束时供热系统两侧2.0和3.0 m范围的冻结深度控制分别在30和35 cm以内。有效热影响半径与供热时间和有害冻结深度均呈正比关系。当有害冻结深度为30,35,40 cm,供热5 d时的有效热影响半径分别为0.44,0.64,0.83 m;若热影响半径需达到1.5 m,所需供热时间分别为53,41,35 d。实际应用时应根据路基有害冻结深度和冻胀处置时间要求,合理设计供热系统沿线路的纵向布设间距,以保证供相邻供热系统的解冻范围在规定时间内交汇。

期刊论文 2023-05-16 DOI: 10.13722/j.cnki.jrme.2022.0562

为解决目前寒区路基冻胀病害难以根除和缺少冻胀灾后抢险措施的难题,设计了一种寒区路基地源热泵系统。结果表明:路基热泵宜采用直接膨胀式换热形式,实体装置可以自动化地输出40、 50、 60℃等不同水平供热温度,制热系数大于3.0,实现对地热能的高效收集、转化与传递。热泵运行第1、 5、 10 d的热作用半径分别达到0.76、 1.64、 2.30 m。案例模拟表明,在天然条件下路基中心冻结深度为0.89 m;而在人工供热条件下,冻结深度减小至0.2 m以内,土体升温幅度和热扩散范围随供热温度的提高而增大。实际应用中,面向冻胀快速解冻与应急抢险时,热泵沿路基纵向间距宜取2.0~4.0 m,供热容量设计为1.0~2.0 kW。

期刊论文 2022-01-26 DOI: 10.16511/j.cnki.qhdxxb.2022.21.007
  • 首页
  • 1
  • 2
  • 末页
  • 跳转
当前展示1-10条  共18条,2页