为深入研究冻土靶体的抗侵彻特性,开展了冻土靶体抗侵彻系列模型试验,得到了不同温度下冻土靶体抗尖卵型弹体侵彻成坑效应、弹道轨迹和侵彻深度等参数。试验结果表明,冻土靶体抗侵彻特性与其温度和弹体撞击速度密切相关,冻土温度相同,弹体撞击速度越大,冻土靶体表面成坑越大,抗侵彻深度越大,弹体侵彻速度相近,冻土温度越低冻土靶体表面成坑越小,抗侵彻深度小。为准确预测冻土靶体抗卵形弹体侵彻深度,引入考虑温度效应的摩尔-库仑准则,结合空腔膨胀理论对冻土靶体抗侵彻深度进行计算分析,与试验实测数据对比,理论预测值能够较准确反映冻土靶体抗侵彻深度与冻土温度和弹体侵彻速度间的关系。
为深入研究冻土靶体的抗侵彻特性,开展了冻土靶体抗侵彻系列模型试验,得到了不同温度下冻土靶体抗尖卵型弹体侵彻成坑效应、弹道轨迹和侵彻深度等参数。试验结果表明,冻土靶体抗侵彻特性与其温度和弹体撞击速度密切相关,冻土温度相同,弹体撞击速度越大,冻土靶体表面成坑越大,抗侵彻深度越大,弹体侵彻速度相近,冻土温度越低冻土靶体表面成坑越小,抗侵彻深度小。为准确预测冻土靶体抗卵形弹体侵彻深度,引入考虑温度效应的摩尔-库仑准则,结合空腔膨胀理论对冻土靶体抗侵彻深度进行计算分析,与试验实测数据对比,理论预测值能够较准确反映冻土靶体抗侵彻深度与冻土温度和弹体侵彻速度间的关系。
为深入研究冻土靶体的抗侵彻特性,开展了冻土靶体抗侵彻系列模型试验,得到了不同温度下冻土靶体抗尖卵型弹体侵彻成坑效应、弹道轨迹和侵彻深度等参数。试验结果表明,冻土靶体抗侵彻特性与其温度和弹体撞击速度密切相关,冻土温度相同,弹体撞击速度越大,冻土靶体表面成坑越大,抗侵彻深度越大,弹体侵彻速度相近,冻土温度越低冻土靶体表面成坑越小,抗侵彻深度小。为准确预测冻土靶体抗卵形弹体侵彻深度,引入考虑温度效应的摩尔-库仑准则,结合空腔膨胀理论对冻土靶体抗侵彻深度进行计算分析,与试验实测数据对比,理论预测值能够较准确反映冻土靶体抗侵彻深度与冻土温度和弹体侵彻速度间的关系。
为深入研究冻土靶体的抗侵彻特性,开展了冻土靶体抗侵彻系列模型试验,得到了不同温度下冻土靶体抗尖卵型弹体侵彻成坑效应、弹道轨迹和侵彻深度等参数。试验结果表明,冻土靶体抗侵彻特性与其温度和弹体撞击速度密切相关,冻土温度相同,弹体撞击速度越大,冻土靶体表面成坑越大,抗侵彻深度越大,弹体侵彻速度相近,冻土温度越低冻土靶体表面成坑越小,抗侵彻深度小。为准确预测冻土靶体抗卵形弹体侵彻深度,引入考虑温度效应的摩尔-库仑准则,结合空腔膨胀理论对冻土靶体抗侵彻深度进行计算分析,与试验实测数据对比,理论预测值能够较准确反映冻土靶体抗侵彻深度与冻土温度和弹体侵彻速度间的关系。
为深入研究冻土靶体的抗侵彻特性,开展了冻土靶体抗侵彻系列模型试验,得到了不同温度下冻土靶体抗尖卵型弹体侵彻成坑效应、弹道轨迹和侵彻深度等参数。试验结果表明,冻土靶体抗侵彻特性与其温度和弹体撞击速度密切相关,冻土温度相同,弹体撞击速度越大,冻土靶体表面成坑越大,抗侵彻深度越大,弹体侵彻速度相近,冻土温度越低冻土靶体表面成坑越小,抗侵彻深度小。为准确预测冻土靶体抗卵形弹体侵彻深度,引入考虑温度效应的摩尔-库仑准则,结合空腔膨胀理论对冻土靶体抗侵彻深度进行计算分析,与试验实测数据对比,理论预测值能够较准确反映冻土靶体抗侵彻深度与冻土温度和弹体侵彻速度间的关系。
冻土是高纬度、高海拔地区的常见地质结构,为指导冻土区的地下防护工程设计,开展了冻土抗侵彻试验与数值仿真。分析了侵彻过程中冻土的破坏机理,并根据冻土材料特性以及空腔膨胀理论研究了子弹的侵彻深度。试验和仿真结果表明:随着子弹速度的上升,冻土表面的破坏程度增加。冻土材料在拉应力、剪应力联合作用下发生破坏,边缘处的材料破坏得最严重。靶板内部的裂纹对子弹速度敏感,当子弹速度达到170m/s时裂纹数目显著增加。针对冻土抗侵彻问题,考虑了冻土粘性效应的空腔膨胀模型与试验的平均误差为3.03%,对侵彻深度的预测能力明显强于原始的空腔膨胀模型以及其他经验公式。
冻土是高纬度、高海拔地区的常见地质结构,为指导冻土区的地下防护工程设计,开展了冻土抗侵彻试验与数值仿真。分析了侵彻过程中冻土的破坏机理,并根据冻土材料特性以及空腔膨胀理论研究了子弹的侵彻深度。试验和仿真结果表明:随着子弹速度的上升,冻土表面的破坏程度增加。冻土材料在拉应力、剪应力联合作用下发生破坏,边缘处的材料破坏得最严重。靶板内部的裂纹对子弹速度敏感,当子弹速度达到170m/s时裂纹数目显著增加。针对冻土抗侵彻问题,考虑了冻土粘性效应的空腔膨胀模型与试验的平均误差为3.03%,对侵彻深度的预测能力明显强于原始的空腔膨胀模型以及其他经验公式。
冻土是高纬度、高海拔地区的常见地质结构,为指导冻土区的地下防护工程设计,开展了冻土抗侵彻试验与数值仿真。分析了侵彻过程中冻土的破坏机理,并根据冻土材料特性以及空腔膨胀理论研究了子弹的侵彻深度。试验和仿真结果表明:随着子弹速度的上升,冻土表面的破坏程度增加。冻土材料在拉应力、剪应力联合作用下发生破坏,边缘处的材料破坏得最严重。靶板内部的裂纹对子弹速度敏感,当子弹速度达到170m/s时裂纹数目显著增加。针对冻土抗侵彻问题,考虑了冻土粘性效应的空腔膨胀模型与试验的平均误差为3.03%,对侵彻深度的预测能力明显强于原始的空腔膨胀模型以及其他经验公式。
冻土是高纬度、高海拔地区的常见地质结构,为指导冻土区的地下防护工程设计,开展了冻土抗侵彻试验与数值仿真。分析了侵彻过程中冻土的破坏机理,并根据冻土材料特性以及空腔膨胀理论研究了子弹的侵彻深度。试验和仿真结果表明:随着子弹速度的上升,冻土表面的破坏程度增加。冻土材料在拉应力、剪应力联合作用下发生破坏,边缘处的材料破坏得最严重。靶板内部的裂纹对子弹速度敏感,当子弹速度达到170m/s时裂纹数目显著增加。针对冻土抗侵彻问题,考虑了冻土粘性效应的空腔膨胀模型与试验的平均误差为3.03%,对侵彻深度的预测能力明显强于原始的空腔膨胀模型以及其他经验公式。
针对冻土地区的地下防护工程建设问题,进行了弹体侵彻冻土试验,以100~200 m/s的弹体初速侵彻-10℃下含水率为30%的冻土,对冻土的抗侵彻能力进行了试验研究。试验结果表明:随着弹体初速的提高,弹体侵彻冻土的深度逐渐增加,弹体在侵彻冻土过程中弹体姿态未出现反转,并得到了弹体侵彻深度和速度之间的关系式。采用LS-DYNA软件建立了数值计算模型对弹体侵彻冻土进行仿真计算,分析了侵彻速度对弹体侵彻能力的影响。通过数值模拟并对比试验结果、理论计算和经验公式可知,弹体侵彻深度与弹体初速变化的趋势保持一致,与理论计算结果吻合程度高,验证了空腔膨胀理论模型在侵彻冻土方面的可行性,相对于经验公式,理论计算公式更贴近于实际侵彻结果,为冻土地区的地下防护工程建设提供理论依据。