共检索到 2

针对工程扰动引起的多年冻土退化与路基热稳定性问题,基于光伏发电技术与制冷技术,开发一种用于防治多年冻土退化的光伏直驱压缩式制冷装置,并开展现场应用测试与数值模拟研究。研究结果表明:新装置能够适应多年冻土地区的严寒环境,实现自动化运行,且装置运行期间,制冷管管壁热流密度随太阳总辐射量的增大而增大,平均热流密度为-4.1~-6.3 W/m2。与普通路基相比,制冷路基的热学稳定性得到显著提升,其中,冻土人为上限随着制冷管长度与管壁热流密度的增大而提高,随着制冷管埋置深度的增大先提高后降低,而冻土升温速率则随着制冷管长度、埋深与管壁热流密度的增大而降低。基于灰色关联理论分析可知,制冷功率对人为上限影响最显著,制冷管长度的影响次之,埋置深度的影响最小;而冻土升温速率对制冷管埋置深度最敏感,制冷功率次之,制冷管长度最小,建议设计施工时优先选择更为显著的因素加以调控。

期刊论文 2023-06-27

为了防治多年冻土地区路基下覆多年冻土退化问题,针对已研发的太阳能压缩式制冷装置,在交通运输部青海冻土研究观测基地开展现场制冷性能试验研究。结果表明:该装置在寒季与暖季均能正常运行工作,可以持续为土体降温;制冷方式会影响制冷温度沿深度方向的分布情况,采用自下而上的制冷方式更利于降低多年冻土地温;制冷效果不可避免地受到环境温度影响,平均制冷温度与环境温度呈正相关,寒季的平均制冷温度较低,最低可达-7.97℃,暖季的制冷温度较高,最高约为-3.98℃;当管壁的平均制冷温度低于-6.5℃时,装置的制冷量大于向土体的传冷量,冷量可以在壁侧积累;装置的制冷半径受环境温度影响,制冷半径为1.95~2.61 m,在路基工程中,可按照4~5 m间距进行双侧布置。总之,太阳能压缩式制冷装置可以实现对多年冻土路基的温度调控,保障路基长期的稳定性和安全性。

期刊论文 2022-05-16 DOI: 10.13722/j.cnki.jrme.2021.0622
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-2条  共2条,1页