为了研究季节性温度边界条件对冻土路基融化固结特性的影响,对三维非线性大变形融化固结理论进行修正,引入季节性温度边界条件,并采用摩尔库伦准则描述土体融化后进入塑性阶段的沉降变形,建立了能够考虑季节性温度边界条件影响的三维非线性塑性融化固结理论。在此基础上,采用FLAC3D软件对所建理论模型进行数值化,并以青藏公路某段高含冰量路基为例,分析了其在季节性温度边界条件下的融化固结规律,最后结合实测数据验证了所建理论模型的有效性。研究结果表明,冻土路基的沉降变形随着地表温度的季节性变化而呈现出周期性的变化规律,这是季节性温度边界条件下冻土路基融化固结规律的最显著特征。通过对固结过程中孔隙水压力分布的研究发现,路基浅层融化区域内的孔隙水在运营初期已经消散,而在之后长时间的运营过程中,冻土路基融沉的持续发展主要是由于融化锋面处新融化的孔隙水的消散。
为了实现冻土的应力-应变关系的准确预测,研究采用遗传算法(GA)、思维进化算法(MEA)和麻雀优化算法(SSA)对反向传播(BP)神经网络的初始权重和阈值进行优化。以温控三轴试验中冻土的温度、围压和轴向应变3个主要参数为输入,以其轴向应变所对应的偏应力为输出,建立了基于3种优化算法优化的BP神经网络预测模型。结果表明,MEA对于BP神经网络模型的优化性能最佳;MEA-BP均方根误差最小,预测值和实际值的拟合度(R2)接近于1,能够有效地对冻土的应力-应变关系进行预测。
多年冻土是冰冻圈系统的重要组成成分,其热状态和冻融过程的水热交换深刻影响高寒地区的水源涵养功能、生物地球化学循环和生态环境稳定。多年冻土区大气-地面的能量交换过程对气候变化及生态水文等冰冻圈相关环境要素的稳定及动态变化具有决定性作用。地面温度是高山多年冻土区大气-地面能量平衡的重要指标和冻土模拟制图的关键驱动条件。本文从冻土-气候关系、地面温度空间分异特征及其影响因素、地面温度监测和冻土模型等方面综述了高山多年冻土区地面温度主要的研究进展;并就空间异质性极强条件下植被、积雪、土壤等局地因素对高山多年冻土区气温和地面温度差的影响,以及地面温度的冻土模拟应用进行了展望。研究认为,地面温度是冻土热状态模拟制图的上边界条件,是比气温和遥感陆面温度更有效的多年冻土存在状态的指标,同时也是比钻探测温更简单经济的多年冻土热状态调查手段,然而过去研究不多,因此亟待开展高山多年冻土区地面温度及其与相关下垫面要素的长期协同监测。基于气温、遥感陆面温度进行多年冻土热状态的中大比例尺精准模拟及其时空分布制图,应充分考虑植被和积雪等因素对气温和陆面温度的定量削减作用,否则易造成多年冻土及活动层模拟与实际分布的较...
为了探究黄土丘陵区未冻坡面和冻土坡面在不同径流坡长条件下侵蚀之间的差异,在室内进行模拟冷冻和放水冲刷试验,采用3种径流坡长(2 m, 4 m和6 m)和2种坡面类型(未冻坡面和冻土坡面),定量研究了未冻坡面和冻土坡面的产流产沙过程和水沙关系。结果表明:(1)未冻坡面和冻土坡面的初始产流时间均随着径流坡长的延长而缩短,在相同径流坡长条件下,冻土坡面的初始产流时间较未冻坡面减少;(2)未冻坡面的平均产流量与平均产沙量和冻土坡面的平均产沙量均随着径流坡长的延长而增大,而冻土坡面的平均产流量随着径流坡长的变化无显著差异;(3)未冻坡面产流率和产沙率的关系分为缓慢和急速增加两个阶段,而冻土坡面的产沙率则随着产流率的增大而增大;(4)累积产流量与累积产沙量之间呈正相关关系,参数c的绝对值与径流坡长呈正比,并且冻土坡面大于未冻坡面。土壤冻结后使初始产流时间大大缩短,径流量的增加伴随着冻结土壤的不断融化导致冻土坡面侵蚀加剧。
利用黄河源区9个气象站1997—2018年的逐日气温、地表温度和冻土深度资料,使用线性趋势分析法,基于ArcGIS的反距离权重插值法、高程插值法和相关系数法,对黄河源区温度和季节性冻土最大冻结深度以及封冻期起止时间进行分析,研究最大冻结深度与温度的相关关系。结果表明:黄河源区季节性冻土的最大冻结深度分布具有较明显的纬度分带性和垂直分布性,纬度较高地区大于纬度较低地区,海拔较高地区大于海拔较低地区。同时纬度高海拔高的地区相较于纬度低海拔低的地区来说,冻土冻结起始日出现的更早,解冻日出现的更晚,封冻期更长;黄河源区季节性冻土的冻结起止时间均发生了变化,大致表现为冻结起始时间延后,冻结消融时间提前,封冻期缩短,不同地区变化幅度有所不同,源区平均缩短速率为8 d/(10 a)。近20年来,源区绝大部分地区气温、地温和负积温均呈现不同程度的上升趋势,冻土最大冻结深度呈波动减小的趋势,最大冻土深度和冬季平均气温地温、周期内平均气温地温、负积温均呈负相关关系,其对负积温的响应最为显著,相关系数R=-0.762 7。这说明负积温每上升100℃,最大冻土深度将减少7.07 cm。
利用三江源地区2018年1-12月涡动相关系统的观测数据,分析该地区冻土/非冻土期内各能量分项支出分配特征和能量平衡闭合率及其影响因子,以揭示其能量平衡特征。结果表明:显热通量、潜热通量、土壤热通量变化趋势与净辐射相似,且在年尺度、日尺度上具有典型的单峰型变化,但潜热通量、土壤热通量的峰值出现时间具有滞后性。非冻土期内,显热、潜热支出以及土壤吸收的热量占总能量的比例分别为0.38、0.37、0.10;而在冻土期内,上述各能量的支出比分别为0.54、0.19、-0.01。全年能量平衡闭合率为0.69,能量平衡闭合率在冻土期和非冻土期内分别为0.63、0.74。三江源地区冻土期内显热支出为主要能量消耗方式,且在该时段内影响能量平衡闭合率的因素主要是湍流动力因子;非冻土期的能量消耗方式为潜热和显热,热力和动力因子均对能量平衡闭合率产生影响。
地震荷载作用下高含冰量冻土的动力特性试验研究对西北地区地震多发地段的冻土工程的抗震设计具有重要意义。通过选取兰州的重塑冻土进行动三轴试验,分别研究了地震荷载下不同控制温度(-6,-3,-1℃)、不同含水量(30%,50%,75%)以及不同围压(0.3,0.5,1,2 MPa)下高含冰量冻土的动应力应变关系和动弹性模量。试验结果显示,不同条件下冻土的动应力应变关系呈Hardin-Drnevich双曲线模型,并且不同温度、不同围压和不同含水量对模型参数都有着影响。动弹性模量随温度升高而减小,温度每升高1℃,弹性模量就下降12~15 MPa。围压对动弹性模量的影响有强化作用和弱化作用,-6℃时动弹性模量随围压增大而增大,-1℃时大应变情况下动弹性模量随围压增大而减小。对于高含冰量冻土,动弹性模量随含水量的增大先减小后增大。
为了探求越冬期间日光温室地表灌溉水温度的调控措施,以小东川河地表水为研究对象,借助传热学的方法,分析了越冬期间河流地表水温度的变化特性及其成因。结果表明:在水面非结冰期和结冰期,水温的变化趋势与气温的变化趋势一致,河流地表水温度都具有随气温呈余弦的日变化规律;在水面结冰期河流地表水温度基本处于相对稳定(-3.6℃左右)状态,而且水温持续高于气温;河床砂卵石介质对河流地表水的热量补给作用、河流表面冰盖及薄层空气的隔热作用和不同介质比热的差异是河流地表水水温变化特性产生的关键原因;河流地表水水温与气温具有较明显的线性相关关系,相关系数在0.9以上。研究结果可为越冬期日光温室灌溉水温的调控提供基础参数和依据。
针对在高原机场修建中冻土区域浇筑控制时,一直存在大量热损失的问题,提出基于非线性弹性理论模型的冻土区域浇筑控制与热损失关系分析法,该方法先对冻土区域的应变进行分析,确定冻土区体变增量情况,并以此为基础,确定高原冻土区域土体发生塑性应变增量与应力增量的关系,采用热物理参数计算出冻土区域土体温度场数值,得到冻融土的体积热容量,分析冻土区域进行浇筑控制时产生的冻融情况,确定导热微分方向,建立浇筑控制与热损失间的非线性弹性理论模型,分析高原机场修建中冻土区域浇筑控制与热损失的关系。实验结果表明,沿着浇筑中点的温度会随着浇筑控制时间的增长而降低,距离浇筑中心越远位置的土体,温度越低,热损失越快。
利用ARCGIS的空间统计分析和栅格计算功能,对黑龙江省30个气温站1960~2015年间的冻土平均厚度和气温数据进行相关关系的分析.研究发现:(1)黑龙江多年冻土出现退化趋势,主要表现为冻土厚度和分布面积缩小以及部分多年冻土消失.(2)1960~2015年间气温升高是多年冻土退化的主要自然原因.(3)55年来黑龙江冻土退化与平均气温呈显著负相关的相关关系.