冰层厚度变化是评估冰川物质平衡的重要环节,利用表面平行流假设并结合升降轨SAR数据集估算冰厚变化的方法近年来被视为研究热点.然而,这类方法往往需要通过正则化手段抑制观测不足引发的解算不确定性,而传统二范数的解算策略也易受到观测粗差引起的误差传播.为解决这一问题,本研究以锡亚琴冰川为例,提出结合Sentinel-1/2和高分三号数据估算偏移量,通过联合解算偏移量和迭代重加权最小二乘得到冰川三维流速和冰层厚度变化.通过多源数据增加观测量的思想取代正则化,消除正则化因子主观性对结果的影响.在表面平行流假设的条件下监测显示2018年7—9月锡亚琴冰川非表面平行流速约为-0.018 m·d-1,冰川主要表现为消融.与仅利用Sentinel-1升降轨道数据的解算结果相比,结合Sentinel-2和高分三号数据显著提高了三维流速的估计精度.在东西、北南和垂直方向上,精度分别提升了51%、30%和31%.研究结果表明多影像联合解算有助于提高冰川厚度变化精度,而我国高分三号卫星数据的应用显著提升了三维流速的解算精度.
冰层厚度变化是评估冰川物质平衡的重要环节,利用表面平行流假设并结合升降轨SAR数据集估算冰厚变化的方法近年来被视为研究热点.然而,这类方法往往需要通过正则化手段抑制观测不足引发的解算不确定性,而传统二范数的解算策略也易受到观测粗差引起的误差传播.为解决这一问题,本研究以锡亚琴冰川为例,提出结合Sentinel-1/2和高分三号数据估算偏移量,通过联合解算偏移量和迭代重加权最小二乘得到冰川三维流速和冰层厚度变化.通过多源数据增加观测量的思想取代正则化,消除正则化因子主观性对结果的影响.在表面平行流假设的条件下监测显示2018年7—9月锡亚琴冰川非表面平行流速约为-0.018 m·d-1,冰川主要表现为消融.与仅利用Sentinel-1升降轨道数据的解算结果相比,结合Sentinel-2和高分三号数据显著提高了三维流速的估计精度.在东西、北南和垂直方向上,精度分别提升了51%、30%和31%.研究结果表明多影像联合解算有助于提高冰川厚度变化精度,而我国高分三号卫星数据的应用显著提升了三维流速的解算精度.
冰层厚度变化是评估冰川物质平衡的重要环节,利用表面平行流假设并结合升降轨SAR数据集估算冰厚变化的方法近年来被视为研究热点.然而,这类方法往往需要通过正则化手段抑制观测不足引发的解算不确定性,而传统二范数的解算策略也易受到观测粗差引起的误差传播.为解决这一问题,本研究以锡亚琴冰川为例,提出结合Sentinel-1/2和高分三号数据估算偏移量,通过联合解算偏移量和迭代重加权最小二乘得到冰川三维流速和冰层厚度变化.通过多源数据增加观测量的思想取代正则化,消除正则化因子主观性对结果的影响.在表面平行流假设的条件下监测显示2018年7—9月锡亚琴冰川非表面平行流速约为-0.018 m·d-1,冰川主要表现为消融.与仅利用Sentinel-1升降轨道数据的解算结果相比,结合Sentinel-2和高分三号数据显著提高了三维流速的估计精度.在东西、北南和垂直方向上,精度分别提升了51%、30%和31%.研究结果表明多影像联合解算有助于提高冰川厚度变化精度,而我国高分三号卫星数据的应用显著提升了三维流速的解算精度.