为探究风-雪两相流风洞试验对高寒高速列车设备舱内雪粒进入与堆积现象的可复现性和增加滤网密度对设备舱防积雪性能的影响,基于某冰雪风洞试验台对某典型高寒高速列车全尺寸设备舱模型内进雪、积雪进行复现与对比试验研究。复现试验监控裙板进气格栅处的雪粒子流入及底板表面积雪情况,并与实车情况进行对比。对比试验采集了设备舱进气格栅、转向架牵引电机通风机处的气流流速及设备舱内的积雪分布与质量。试验结果表明:风-雪两相流风洞试验可以良好再现设备舱裙板处雪粒的进入,雪粒在舱内的自然下沉与堆积,积雪层随试验时长增加不断增厚,有效复现全尺寸设备舱内积雪情况;滤网密度增加对设备舱进气格栅及舱内通风机进、出风口处的气流流速影响较小,夏季高温条件下的设备正常进风无影响;在风-雪环境下,滤网密度增加有效缩短进入设备舱的雪粒子纵深迁移运动距离,对雪粒子入舱阻滞作用显著。高密度滤网可降低舱内迎风侧平均积雪厚度55.1%,舱内总积雪量减少66.3%。对裙板格栅滤网进行加密可有效提升设备舱防进雪性能,减少相关设备在冬季低温条件下的故障率。
为探究风-雪两相流风洞试验对高寒高速列车设备舱内雪粒进入与堆积现象的可复现性和增加滤网密度对设备舱防积雪性能的影响,基于某冰雪风洞试验台对某典型高寒高速列车全尺寸设备舱模型内进雪、积雪进行复现与对比试验研究。复现试验监控裙板进气格栅处的雪粒子流入及底板表面积雪情况,并与实车情况进行对比。对比试验采集了设备舱进气格栅、转向架牵引电机通风机处的气流流速及设备舱内的积雪分布与质量。试验结果表明:风-雪两相流风洞试验可以良好再现设备舱裙板处雪粒的进入,雪粒在舱内的自然下沉与堆积,积雪层随试验时长增加不断增厚,有效复现全尺寸设备舱内积雪情况;滤网密度增加对设备舱进气格栅及舱内通风机进、出风口处的气流流速影响较小,夏季高温条件下的设备正常进风无影响;在风-雪环境下,滤网密度增加有效缩短进入设备舱的雪粒子纵深迁移运动距离,对雪粒子入舱阻滞作用显著。高密度滤网可降低舱内迎风侧平均积雪厚度55.1%,舱内总积雪量减少66.3%。对裙板格栅滤网进行加密可有效提升设备舱防进雪性能,减少相关设备在冬季低温条件下的故障率。
为探究风-雪两相流风洞试验对高寒高速列车设备舱内雪粒进入与堆积现象的可复现性和增加滤网密度对设备舱防积雪性能的影响,基于某冰雪风洞试验台对某典型高寒高速列车全尺寸设备舱模型内进雪、积雪进行复现与对比试验研究。复现试验监控裙板进气格栅处的雪粒子流入及底板表面积雪情况,并与实车情况进行对比。对比试验采集了设备舱进气格栅、转向架牵引电机通风机处的气流流速及设备舱内的积雪分布与质量。试验结果表明:风-雪两相流风洞试验可以良好再现设备舱裙板处雪粒的进入,雪粒在舱内的自然下沉与堆积,积雪层随试验时长增加不断增厚,有效复现全尺寸设备舱内积雪情况;滤网密度增加对设备舱进气格栅及舱内通风机进、出风口处的气流流速影响较小,夏季高温条件下的设备正常进风无影响;在风-雪环境下,滤网密度增加有效缩短进入设备舱的雪粒子纵深迁移运动距离,对雪粒子入舱阻滞作用显著。高密度滤网可降低舱内迎风侧平均积雪厚度55.1%,舱内总积雪量减少66.3%。对裙板格栅滤网进行加密可有效提升设备舱防进雪性能,减少相关设备在冬季低温条件下的故障率。
采用基于Realizable k-ε模型的非定常雷诺时均方法(URANS)和离散相模型(DPM)研究高速列车底部转向架及其腔体区域的严重积雪问题。基于高速列车底部风雪两相流时空运动演化特性进行深入分析,并对转向架区域积雪成因进行归纳总结。研究结果表明:大量雪粒跟随转向架区域剪切层下方的高速气流流出转向架区域,部分雪粒在转向架中间区域和后端板附近跟随上扬气流向上扬起并撞击黏附在转向架和后端板迎风面,并在转向架底面形成大量积雪;仅有少量雪粒在后侧电机和后端板附近向上爬升至转向架上方,在后端板顶部相遇汇聚后在低速气流驱动下游离折返至前端板附近并重新汇入车底流场,悬浮雪粒在重力作用下沉积在转向架顶面,并在转向架上表面形成少量积雪。
采用基于Realizable k-ε模型的非定常雷诺时均方法(URANS)和离散相模型(DPM)研究高速列车底部转向架及其腔体区域的严重积雪问题。基于高速列车底部风雪两相流时空运动演化特性进行深入分析,并对转向架区域积雪成因进行归纳总结。研究结果表明:大量雪粒跟随转向架区域剪切层下方的高速气流流出转向架区域,部分雪粒在转向架中间区域和后端板附近跟随上扬气流向上扬起并撞击黏附在转向架和后端板迎风面,并在转向架底面形成大量积雪;仅有少量雪粒在后侧电机和后端板附近向上爬升至转向架上方,在后端板顶部相遇汇聚后在低速气流驱动下游离折返至前端板附近并重新汇入车底流场,悬浮雪粒在重力作用下沉积在转向架顶面,并在转向架上表面形成少量积雪。