受青藏高原暖湿化的影响,多年冻土呈现快速退化状态,并由此诱发大量的冻土滑坡灾害。为深入探讨多年冻土区滑坡失稳机制,本研究基于多年冻土滑坡区活动层(融土)粉土、黏土及相应土-冰界面直剪试验结果,通过离散元分析软件MatDEM对应修正了直剪试验模型,并将数值模拟结果与直剪试验结果进行对比分析。结果表明:修正后的直剪模型可有效地对粉土和黏土进行数值模拟计算;模拟与试验结果的剪切特性曲线及抗剪强度拟合曲线变化趋势基本保持一致,且黏土抗剪强度明显低于粉土,表明土体抗剪强度随土颗粒粒度的减小而降低;在土-冰界面处,黏土-冰的抗剪强度最低,土体稳定性最弱。模拟结果中位移场图、单元连接状态图均表明在剪切过程中形成了明显的剪切带,且融土界面处及非界面处颗粒的平均配位数变化规律显示剪切带内的颗粒在试样变形中起到主要作用。此外,热量变化曲线表明,剪切过程中的热量主要来源于剪切带中上下剪切盒产生的摩擦热。本研究可为高原冻土滑坡区土体抗剪强度数值模拟研究提供有效参考模型。
粉尘微粒作为大气气溶胶的关键组分,对气候变化和大气环境具有重要影响。本文基于青藏高原东南部梅里雪山明永冰川区雪冰、冰川融水,以及大气降水和融水补给的明永河河水中粉尘微粒的连续观测(2022年11月—2024年1月),系统分析了不同水体中粉尘微粒的沉积特征。结果表明:(1)冰川融水径流中微粒数量浓度具有明显的季节差异,季风期显著高于非季风期。(2)在冰川强烈消融期(5—10月),明永河水的微粒数量浓度呈现出明显的昼夜差异,夜间微粒浓度高于白天。这一现象主要归因于夜间冰川消融速率下降,致使融水径流速度减缓,进而延长了河水中悬浮颗粒物的滞留时间。通过对融水径流昼夜连续观测发现,微粒浓度峰值出现在北京时间20∶00前后,这也证明了融水径流的微粒含量日变化与冰川强烈消融过程之间存在响应关系。(3)水体中细小粒径的微粒(0.57~2μm)主导着微粒的数量浓度。不同水体中微粒的体积-粒径分布均呈单峰型,微粒中值粒径较小,反映了该冰川区粉尘微粒主要源于高空远距离传输及其沉降。本研究揭示了梅里雪山冰川区雪冰和水体中粉尘微粒的沉积特征,对分析气候变暖背景下冰冻圈快速消融机制及其对区域气候变化的响应具有重要...
受青藏高原暖湿化的影响,多年冻土呈现快速退化状态,并由此诱发大量的冻土滑坡灾害。为深入探讨多年冻土区滑坡失稳机制,本研究基于多年冻土滑坡区活动层(融土)粉土、黏土及相应土-冰界面直剪试验结果,通过离散元分析软件MatDEM对应修正了直剪试验模型,并将数值模拟结果与直剪试验结果进行对比分析。结果表明:修正后的直剪模型可有效地对粉土和黏土进行数值模拟计算;模拟与试验结果的剪切特性曲线及抗剪强度拟合曲线变化趋势基本保持一致,且黏土抗剪强度明显低于粉土,表明土体抗剪强度随土颗粒粒度的减小而降低;在土-冰界面处,黏土-冰的抗剪强度最低,土体稳定性最弱。模拟结果中位移场图、单元连接状态图均表明在剪切过程中形成了明显的剪切带,且融土界面处及非界面处颗粒的平均配位数变化规律显示剪切带内的颗粒在试样变形中起到主要作用。此外,热量变化曲线表明,剪切过程中的热量主要来源于剪切带中上下剪切盒产生的摩擦热。本研究可为高原冻土滑坡区土体抗剪强度数值模拟研究提供有效参考模型。
海冰表面积雪深度是利用卫星测高技术反演海冰厚度的关键参数。基于ICESat-2和CryoSat-2测高卫星的协同观测数据(简称IS2CS),对比与评估卫星测高雪深估算的两种时空匹配方法(轨迹搜索法和格网搜索法),并对2018-2024年北极海冰生长期(10月至次年4月)积雪深度的时空分布特征进行分析。结果表明:(1)IS2CS轨迹法雪深与OIB实测数据具有较高的沿轨相关性,能够较好地捕获沿轨积雪深度的变化特征;(2)格网法雪深更适合表征大尺度积雪深度的空间分布和季节性变化特征,本文格网法雪深和GSFC雪深精度相当,在SIMBA数据的评估中本文格网法雪深性能优于GSFC雪深;(3)相比IS2CS雪深,MW99/AMSR2雪深相对偏厚,且在海冰生长期内季节性变化表征能力较弱;(4)海冰积雪深度呈现明显的时空差异,多年冰表面雪深普遍厚于一年冰表面雪深,春季雪深厚于秋冬季雪深。2018-2024年间,北极海冰表面积雪深度总体呈现减薄趋势,且多年冰区域的雪深减薄速率高于一年冰区域。研究成果为改进卫星测高雪深产品和优化海冰厚度反演算法提供了科学依据。
研究玉龙雪山冰尘的理化特征及其微观形貌,不仅可以揭示区域内冰尘的形成机理、来源和影响因素等,更为进一步理解影响冰川消融的机制提供了科学依据。以2023年8~9月在玉龙雪山冰川区消融冰表面采集的冰尘样品为研究载体,分析了冰尘的理化特征和形成机制,讨论了冰尘对冰川融化和冰川区碳循环的潜在影响。通过对冰尘样品进行粒度测试,对总有机碳和微观形貌进行分析,发现冰尘中矿物颗粒体积粒径分布众数介于2~28μm,分布结构较为单一,主要源于粉尘沉降和局地岩石风化;雪冰样品中冰尘的总有机碳含量相对较高,且冰尘总有机碳含量随海拔降低而增加(采样点海拔范围在4 500~4 700 m),表明夏季冰川强烈消融对溶解性有机物质的输送和空间分布存在显著影响;冰尘微观形貌主要表现为致密泥质结构,无机物质和有机物质外观特征明显,内部存在不均匀且形态复杂的孔隙,分形维数较高,介于1.600 8~1.845 6,同时冰尘能谱分析检出了丰富的C、Si、O和Al等元素,表明冰尘中富含碳酸盐、硅酸盐和有机质等物质,这与冰川消融密切相关。研究结果有利于与其他冰川相关研究进行对比分析,对研究其他冰川冰尘理化特征及微观形貌具有指导意义...
南极冰下基岩钻探工程技术是研究极地地质科学的重要方向之一。通过解决南极冰下基岩岩心获取工程的技术问题,可为深入探究南极冰下地质体的物质成分、岩石组成及性质等基础地质学问题提供样本。由于南极大陆被平均几千米厚的冰盖覆盖,因此,对冰下地质体的物质成分和岩石组成等了解十分困难,详细资料更加缺乏。为此,本文介绍了南极冰下基岩钻探概况,分别从南极冰下基岩钻探装备及相关工艺方法进行综述分析,从中探寻能够实现在南极内陆快速钻穿冰层,获取更长的冰下基岩岩心的南极冰下基岩钻探装备。结果表明:(1)空气/钻井液反循环技术、连续管技术和热水钻技术是冰层快速钻进的重要发展方向之一;(2)提钻取心技术、绳索取心技术和钻井液反循环连续取心技术将是未来南极冰下基岩取心钻探的重要方向之一。本文还基于电缆悬吊式电动机械钻及岩心回转钻机,提出了多工艺融合的冰下基岩快速钻探技术,并对未来南极冰下基岩多工艺钻探装备及配套工艺技术具体研究方向进行探讨,指出南极冰下多工艺钻探技术在未来冰下基岩钻探有着极大的发展潜力,是未来获取更长冰下基岩岩心的必经之途。
为应对高海拔复杂地形下的公路设计挑战,以滇西北高海拔高速公路项目为例,在高海拔、山岭区、长纵坡的情况下,考虑路线设计合规性、路线设计水平提升、工程造价合理控制等项目实际需求,通过项目工可与初步设计方案关键指标对比、规范运用、沿线积雪冰冻线调查等方法,对项目连续长纵坡方案进行论证,并针对高海拔车辆动力性能衰减、连续纵坡安全阈值模糊、阴坡积雪冰冻灾害突出等核心问题,提出分级降坡设计与气候敏感性选线方法,以期为同类项目提供参考。
重复轨道法是利用测高卫星监测南极冰盖高程变化的重要方法。在利用重复轨道方法计算冰盖高程变化时,引入一种基于抗差估计的方法(insrtitue of geodesy and geophysicsⅢ,IGGⅢ)取代传统的最小二乘方法(least square,LS)。利用2019年3月至2021年12月的ICESat-2陆冰高程数据,分别采用LS方法和IGGⅢ方法在东南极Totten冰川流域进行了实验。结果表明,该流域分别呈现出-0.038±0.163 m/yr和-0.040±0.136 m/yr的高程降低趋势,说明IGGⅢ抗差估计方法能够在保留重复轨道方法高数据利用率的基础上,有效地减少异常数据被错误引入产生的误差。利用MEaSUREs ITS_LIVE高程变化产品对两种方法计算的结果进行了对比,IGGⅢ方法的结果在空间分布上具有更好的一致性。
极化合成孔径雷达(Polarimetric Synthetic Aperture Radar, PolSAR)因其成像不受环境、时间和气候影响的优势而备受冰川识别领域研究人员的关注。然而,现有的研究并不能充分挖掘双极化SAR影像中的冰川散射特征。针对这一问题,提出了一个基于双极化Sentinel-1 A数据的冰川分类网络S1-UNet,利用双极化SAR数据中的散射特性,实现了对冰川区域的自动提取。引入了注意力特征融合模块增强图像的低级特征与高级特征之间的关联性;采用了改进的空洞空间金字塔池化(Atrous Spatial Pyramid Pooling, ASPP)模块获取图像不同尺度的散射特征信息;实验结果表明,与其他语义分割和冰川识别网络相比,S1-UNet模型的性能最好,交并比、精确率分别为94.57%、97.82%,召回率达到96.79%。
利用近10 a G6京藏高速沿线自动气象站与交通气象站逐时观测资料,分析G6呼和浩特—卓资县—集宁区段(简称G6呼集段)道路结冰的时空特征及影响因子的变化规律。结果表明:10—次年4月为G6呼集段道路结冰易发期,通过分析“冰点”温度变化,G6呼集段呼和浩特至集宁方向路面温度(简称路温)和气温呈先陡降再缓升的U型特征,卓资段为U型底部,呼市至卓资、集宁段结冰日数呈现“少、多、少”分布,卓资段最先达到结冰气象条件。降雪、积雪是引发该路段道路结冰的主要诱因,年均40次,占比89%,降雪结冰主要发生于11至次年3月,傍晚至凌晨为结冰高发时段,结冰过程持续5~30 h;积雪结冰的特点是时间短,冰面浅薄。降水和高湿引起的道路结冰年均不到5 d,占比11%,主要发生于秋冬、冬春交替夜晚。日最低气温主要集中于06—07时,白天路温高于气温,两者变化趋势一致,其温差从日出至日落呈先增后减,夜晚气温略高于路温,温差稳定。通过路温和气温的变化关系总结出不同区段、时期的温差公式,利用高分辨率气温数据实现路温精准监测,达到及时预警的目的。