季节性冻土地区基础计算过程中需要考虑切向冻胀力和法向冻胀力,防止受二力影响使建(构)筑物产生破坏。对于是否考虑冻胀力应根据土的含水率、土壤类别、冻土层厚度等现场条件综合评判,不能局限于规范的规定。结合工程建设实例,分别在规范计算取值和现场试桩两种情况下,对季节性冻土地区光伏灌注桩长度进行研究,对比分析了在施工工期、造价成本的差别,为后续类似项目提供借鉴。
季节性冻土的融冻循环过程会导致土壤电阻率和冻土层分界面随季节变化,冬季输电线路杆塔地网接地电阻可能上升,甚至超过标准限定值,影响线路的安全稳定运行。为了研究季节性冻土因素对杆塔地网接地电阻的影响,仿真研究了冻土层结构及冻土层厚度对其接地电阻的影响,并采用柔性石墨和圆钢接地材料同沟敷设的方案对实际输电线路杆塔地网进行了改造,对比分析了接地电阻的差异。研究结果表明:在不同冻土层结构和冻土层厚度情况下,柔性石墨地网相比于圆钢地网,其接地电阻最大降阻率分别达到了18. 76%和23. 65%。研究成果可为季节性冻土环境下输电线路杆塔接地降阻提供参考。
为研究季节性冻土场地冻结期和非冻结期的动力学特征参数及地震动差异,通过哈尔滨场地地脉动单点三分量观测,对比分析不同季节的地脉动特征,采用地脉动单点H/V谱比法研究冻结土层对场地卓越频率、放大因子、等效剪切波速以及场地类别的影响,提出一种冻土层厚度的估算方法。结果表明:冻结土层使地脉动水平分量卓越频率增大,对竖向分量卓越频率的影响不明显;冻结期场地卓越频率增大的幅度除了与覆盖层厚度呈负相关外,还与场地表层刚度有关;冻结土层使场地放大因子减小,减小幅度与覆盖层厚度不相关,与场地表层刚度有关;通过场地剪切波速资料、地脉动H/V谱比卓越频率变化值,便可估算出冻土层厚度;冻结土层使观测场地的等效剪切波速vs20平均增加13%,vs30平均增加11%;vs20的增加未引起Ⅱ类场地类别发生变化,使vs20接近250m/s的Ⅲ类场地变成Ⅱ类场地;vs30的增加没有引起D类场地类别发生变化。
通过对深钻孔地温的测量,对斯塔诺夫高地不同地貌特征区永久冻土层厚度和温度进行了估测。对多年冻土温度在全年温度波动和冻土深度的垂直分布格局进行了检查,并获得有关这些变量的回归方程。重建了过去150 000 a以来该地区不同的地貌特征区地下温度场和冻土厚度的分布模型。
季节性冻土和多年冻土的存在,对场地的地震反应将产生一定的影响。根据一维波动理论,应用水平层状场地地震反应的等效线性化有关程序,对季节性I,II类场地的冻土区和多年冻土区在不同地震波作用下的反应进行计算,分析冻土层的变化对场地地震反应的影响。计算结果表明:在季节性冻土区,冻土层使自由场地的地面峰值加速度减小,且随冻土地温降低,冻土厚度增大、地面的加速度减小。对II类场地的冻土层影响大于I类场地;在多年冻土区,冻土层厚度越大,II类场地的地面加速度越小,而在I类场地上没有此规律。多年冻土上界以上为融土时,地表面的加速度峰值比上界以上为季节性冻土时要大。