青藏高原羌塘盆地存在永久性冻土层和中生界高陡海相地层,复杂的地表与地下地质条件导致地震数据具有较低信噪比和复杂波场,以致地震成像与构造解释面临极大挑战。共反射面元(CRS)叠加技术基于旁轴射线理论突破了水平层状模型假设,可实现零偏移距剖面高信噪比成像,在含冻土层低信噪比地区技术优势明显。利用羌塘盆地实际二维地震数据,首次开展了冻土区提高信噪比CRS叠加与常规叠前随机噪声衰减(PreRNA)、面元均化和倾角时差校正(DMO)地震处理技术对比。对比分析表明,CRS叠加不仅在信噪比和保真度方面优于常规面元均化和PreRNA,而且叠前道集利于后续偏移速度分析(MVA)质控。CRS叠加取得零偏移距剖面的质量优于DMO剖面,中、长孔径绕射波更加丰富,利于断裂、断点偏移归位。笔者等通过方法对比和处理实践证明,CRS叠加可作为提升冻土层区信噪比的地震处理关键技术之一,将有利改善复杂构造区深度域地震成像精度,加快羌塘油气勘探进程。
青藏高原羌塘盆地存在永久性冻土层和中生界高陡海相地层,复杂的地表与地下地质条件导致地震数据具有较低信噪比和复杂波场,以致地震成像与构造解释面临极大挑战。共反射面元(CRS)叠加技术基于旁轴射线理论突破了水平层状模型假设,可实现零偏移距剖面高信噪比成像,在含冻土层低信噪比地区技术优势明显。利用羌塘盆地实际二维地震数据,首次开展了冻土区提高信噪比CRS叠加与常规叠前随机噪声衰减(PreRNA)、面元均化和倾角时差校正(DMO)地震处理技术对比。对比分析表明,CRS叠加不仅在信噪比和保真度方面优于常规面元均化和PreRNA,而且叠前道集利于后续偏移速度分析(MVA)质控。CRS叠加取得零偏移距剖面的质量优于DMO剖面,中、长孔径绕射波更加丰富,利于断裂、断点偏移归位。笔者等通过方法对比和处理实践证明,CRS叠加可作为提升冻土层区信噪比的地震处理关键技术之一,将有利改善复杂构造区深度域地震成像精度,加快羌塘油气勘探进程。
青藏高原羌塘盆地存在永久性冻土层和中生界高陡海相地层,复杂的地表与地下地质条件导致地震数据具有较低信噪比和复杂波场,以致地震成像与构造解释面临极大挑战。共反射面元(CRS)叠加技术基于旁轴射线理论突破了水平层状模型假设,可实现零偏移距剖面高信噪比成像,在含冻土层低信噪比地区技术优势明显。利用羌塘盆地实际二维地震数据,首次开展了冻土区提高信噪比CRS叠加与常规叠前随机噪声衰减(PreRNA)、面元均化和倾角时差校正(DMO)地震处理技术对比。对比分析表明,CRS叠加不仅在信噪比和保真度方面优于常规面元均化和PreRNA,而且叠前道集利于后续偏移速度分析(MVA)质控。CRS叠加取得零偏移距剖面的质量优于DMO剖面,中、长孔径绕射波更加丰富,利于断裂、断点偏移归位。笔者等通过方法对比和处理实践证明,CRS叠加可作为提升冻土层区信噪比的地震处理关键技术之一,将有利改善复杂构造区深度域地震成像精度,加快羌塘油气勘探进程。
青藏高原羌塘盆地存在永久性冻土层和中生界高陡海相地层,复杂的地表与地下地质条件导致地震数据具有较低信噪比和复杂波场,以致地震成像与构造解释面临极大挑战。共反射面元(CRS)叠加技术基于旁轴射线理论突破了水平层状模型假设,可实现零偏移距剖面高信噪比成像,在含冻土层低信噪比地区技术优势明显。利用羌塘盆地实际二维地震数据,首次开展了冻土区提高信噪比CRS叠加与常规叠前随机噪声衰减(PreRNA)、面元均化和倾角时差校正(DMO)地震处理技术对比。对比分析表明,CRS叠加不仅在信噪比和保真度方面优于常规面元均化和PreRNA,而且叠前道集利于后续偏移速度分析(MVA)质控。CRS叠加取得零偏移距剖面的质量优于DMO剖面,中、长孔径绕射波更加丰富,利于断裂、断点偏移归位。笔者等通过方法对比和处理实践证明,CRS叠加可作为提升冻土层区信噪比的地震处理关键技术之一,将有利改善复杂构造区深度域地震成像精度,加快羌塘油气勘探进程。
随着勘探开发技术的不断突破,羌塘盆地已成为中国重要的油气资源潜力区。羌塘盆地位于青藏高原北部,复杂的地质构造、大风干扰及特有的常年分布的高原冻土和高寒、缺氧环境为地震勘探带来了诸多挑战。非均匀分布的高速冻土层会屏蔽地震波能量、畸变地震波走时、降低地震资料的信噪比和一致性,如何正确认识地震波在冻土中的传播机理成为了高原地震勘探的关键问题。首先,针对羌塘盆地的冻土问题,利用高原专用的岩石物理测量设备现场测量野外冻土的岩石物理弹性参数,结合野外认识和实际二维地震反射剖面建立含冻土复杂构造模型;其次,通过有限差分弹性波正演模拟研究冻土带地震波场特征,发现冻土带使面波更发育,影响地震波走时,当直达波场出现“盖帽”特征时,冻土带会屏蔽地震反射振幅,导致地震波反射振幅更弱;最后,通过含冻土与无冻土模型的逆时偏移剖面对比,发现冻土带以下的地震反射成像能量更弱。冻土带的地震传播特征及机理研究结果为羌塘盆地冻土带识别、野外地震数据采集、冻土带能量补偿和偏移成像等提供了理论支撑。
随着勘探开发技术的不断突破,羌塘盆地已成为中国重要的油气资源潜力区。羌塘盆地位于青藏高原北部,复杂的地质构造、大风干扰及特有的常年分布的高原冻土和高寒、缺氧环境为地震勘探带来了诸多挑战。非均匀分布的高速冻土层会屏蔽地震波能量、畸变地震波走时、降低地震资料的信噪比和一致性,如何正确认识地震波在冻土中的传播机理成为了高原地震勘探的关键问题。首先,针对羌塘盆地的冻土问题,利用高原专用的岩石物理测量设备现场测量野外冻土的岩石物理弹性参数,结合野外认识和实际二维地震反射剖面建立含冻土复杂构造模型;其次,通过有限差分弹性波正演模拟研究冻土带地震波场特征,发现冻土带使面波更发育,影响地震波走时,当直达波场出现“盖帽”特征时,冻土带会屏蔽地震反射振幅,导致地震波反射振幅更弱;最后,通过含冻土与无冻土模型的逆时偏移剖面对比,发现冻土带以下的地震反射成像能量更弱。冻土带的地震传播特征及机理研究结果为羌塘盆地冻土带识别、野外地震数据采集、冻土带能量补偿和偏移成像等提供了理论支撑。
随着勘探开发技术的不断突破,羌塘盆地已成为中国重要的油气资源潜力区。羌塘盆地位于青藏高原北部,复杂的地质构造、大风干扰及特有的常年分布的高原冻土和高寒、缺氧环境为地震勘探带来了诸多挑战。非均匀分布的高速冻土层会屏蔽地震波能量、畸变地震波走时、降低地震资料的信噪比和一致性,如何正确认识地震波在冻土中的传播机理成为了高原地震勘探的关键问题。首先,针对羌塘盆地的冻土问题,利用高原专用的岩石物理测量设备现场测量野外冻土的岩石物理弹性参数,结合野外认识和实际二维地震反射剖面建立含冻土复杂构造模型;其次,通过有限差分弹性波正演模拟研究冻土带地震波场特征,发现冻土带使面波更发育,影响地震波走时,当直达波场出现“盖帽”特征时,冻土带会屏蔽地震反射振幅,导致地震波反射振幅更弱;最后,通过含冻土与无冻土模型的逆时偏移剖面对比,发现冻土带以下的地震反射成像能量更弱。冻土带的地震传播特征及机理研究结果为羌塘盆地冻土带识别、野外地震数据采集、冻土带能量补偿和偏移成像等提供了理论支撑。
随着勘探开发技术的不断突破,羌塘盆地已成为中国重要的油气资源潜力区。羌塘盆地位于青藏高原北部,复杂的地质构造、大风干扰及特有的常年分布的高原冻土和高寒、缺氧环境为地震勘探带来了诸多挑战。非均匀分布的高速冻土层会屏蔽地震波能量、畸变地震波走时、降低地震资料的信噪比和一致性,如何正确认识地震波在冻土中的传播机理成为了高原地震勘探的关键问题。首先,针对羌塘盆地的冻土问题,利用高原专用的岩石物理测量设备现场测量野外冻土的岩石物理弹性参数,结合野外认识和实际二维地震反射剖面建立含冻土复杂构造模型;其次,通过有限差分弹性波正演模拟研究冻土带地震波场特征,发现冻土带使面波更发育,影响地震波走时,当直达波场出现“盖帽”特征时,冻土带会屏蔽地震反射振幅,导致地震波反射振幅更弱;最后,通过含冻土与无冻土模型的逆时偏移剖面对比,发现冻土带以下的地震反射成像能量更弱。冻土带的地震传播特征及机理研究结果为羌塘盆地冻土带识别、野外地震数据采集、冻土带能量补偿和偏移成像等提供了理论支撑。
冻土区地震液化现象频发,上覆盖土层的冻结将砂土地震液化特性分析变得复杂化。为研究上覆冻土层对砂土地震液化特性的影响,设计了具有土体冻结系统的剪切模型箱,开展冻土层覆盖条件下砂土地震液化振动台试验,分析不同地震波作用下模型土体加速度、孔隙水压力、土压力、层间和顶部位移的变化规律。结果表明,冻土层覆盖条件下砂土层从底部开始出现局部液化现象,随输入地震动峰值的增大,其液化高度逐渐增加。砂土层液化后的加速度放大系数变化规律与冻土层保持一致,均随着输入地震动峰值的增大先增加后降低,但砂土层对输入地震波的放大能力大于冻土层,不同土层对地震动放大的敏感程度不同。此外,冻土层出现震陷和滑移现象,地震液化造成水分上迁汇聚在冻土-砂交界处,致使冻土层滑移加剧,砂土层的层间位移会随土层高度的增加而增大,但在液化面高度以上发生突降。因此,上覆冻土层可液化场地中结构的抗震验算需重点关注冻土-砂交界处以及液化高度处。本文可为上覆冻土层的可液化场地中土体力学行为变化研究提供数据支撑。
冻土区地震液化现象频发,上覆盖土层的冻结将砂土地震液化特性分析变得复杂化。为研究上覆冻土层对砂土地震液化特性的影响,设计了具有土体冻结系统的剪切模型箱,开展冻土层覆盖条件下砂土地震液化振动台试验,分析不同地震波作用下模型土体加速度、孔隙水压力、土压力、层间和顶部位移的变化规律。结果表明,冻土层覆盖条件下砂土层从底部开始出现局部液化现象,随输入地震动峰值的增大,其液化高度逐渐增加。砂土层液化后的加速度放大系数变化规律与冻土层保持一致,均随着输入地震动峰值的增大先增加后降低,但砂土层对输入地震波的放大能力大于冻土层,不同土层对地震动放大的敏感程度不同。此外,冻土层出现震陷和滑移现象,地震液化造成水分上迁汇聚在冻土-砂交界处,致使冻土层滑移加剧,砂土层的层间位移会随土层高度的增加而增大,但在液化面高度以上发生突降。因此,上覆冻土层可液化场地中结构的抗震验算需重点关注冻土-砂交界处以及液化高度处。本文可为上覆冻土层的可液化场地中土体力学行为变化研究提供数据支撑。