冻土作为冰冻圈重要的组成部分,其存在分布及水热状态受到多种因素的影响。除了纬度、海拔等,局地因素如植被类型、积雪、土壤水分等也在很大程度上影响冻土的变化。特别是位于欧亚大陆多年冻土南缘的兴安-贝加尔型多年冻土,其发育、保存和分布等状态特征与局地因素密不可分。本文结合40多个钻孔资料和现有研究成果,分析得出目前大兴安岭多年冻土温度和厚度总体上受纬度影响,由南往北随年平均气温降低,冻土温度由0℃降到-2.83℃,但局地因素的影响可使地温最低达-3.6℃;厚度范围为29~130 m,其中地温低、厚度大的多年冻土主要发育在谷底的塔头灌丛湿地区域。满归、根河、伊图里河、新林等地的监测数据表明,自2009年开始,大部分钻孔温度显示该区活动层减薄,浅层多年冻土地温降低,融区最大冻结深度加深,而深层多年冻土却呈升温趋势,零地温变化率位置则各不相同,推测这种情况与全球变暖间隙以及植被、积雪和人类活动等局地因素有关。本研究对理解高纬度多年冻土区的地温变化过程以及这些变化的驱动因素具有重要的科学价值,也会对区域经济可持续发展及应对冻土退化带来的问题起到积极作用。
通过回顾全球范围内冻土的分布、特性及其退化趋势,进一步探讨了气候变暖、地面工程活动及土地利用变化对冻土环境的影响。目前受人类活动与气候变暖的双重影响,出现生态系统的破坏、水资源的变化和地质灾害的增加现象,还对村镇饮水安全和基础设施安全构成威胁,对地区乃至全球环境安全构成了严峻挑战。文章强调了采取有效的环境保护措施和气候适应策略的迫切性,旨在为政策制定者和研究者提供科学依据和建议,以缓解和适应这些变化。
黑龙江省是我国高纬度多年冻土的主要分布区,在气候变暖的趋势下,多年冻土退化严重,引起的水文、生态和环境等问题成为相关科学研究关注的焦点。基于黑龙江省34个气象站1971-2019a的气温和地表温度数据,采用冻融指数和地面冻结数模型,结合趋势拟合和局部薄盘光滑样条函数插值法等,研究了黑龙江省年平均气温、年平均地表温度和冻融指数的时空变化,冻土分布特征及其影响因素。结果表明:黑龙江省多年平均气温和地表温度变化范围分别为-8.64-5.60℃和-6.52-7.58℃,空间分布上随纬度和海拔呈带状分布,年平均气温和地表温度年际升温速率趋于一致,分别为0.34℃/10a和0.33℃/10a。从1971-2019a,大气冻结指数和地面冻结指数分别以-5.07℃·d·a-1和-5.04℃·d·a-1的速度下降,大气融化指数和地面融化指数分别以7.63℃·d·a-1和11.89℃·d·a-1的速度上升。大气/地面冻融指数的空间分布上均呈现出纬向趋势,但是在北部山区海拔的影响大于纬度。多年冻土主要分布在北部的大、小兴...
[目的]季节冻土退化会直接影响生长季初期的水分补给,进而影响区域森林健康。然而,目前大兴安岭南段的冻土退化,特别是气候变化下冻土如何退化尚不清楚。[方法]在内蒙古赛罕乌拉国家级自然保护区长期实验森林中,定位观测2014—2022年气温、土壤温度、土壤体积含水量等环境因子,分析森林季节冻土退化特征。[结果]研究表明:大兴安岭南段气温加速上升,1997—2022年间年平均气温上升速率为0.42℃·(10 a)-1,比1973—1996年间的升温速率[0.34℃·(10 a)-1]加快了23.5%;且冻融期(当年11月—次年6月)平均气温上升速率更快[0.46℃·(10 a)-1]。土壤的冻融模式呈自上而下单向冻结,单向融化;冻结速率、融化速率随着土壤深度的增加而变快,在40~80 cm土层达到最大值(冻结速率2.23 cm·d-1、融化速率4.50 cm·d-1)。季节冻土持续退化,观测到的最大冻结深度由80 cm减少至40 cm;冻融期显著缩短,开始冻结时间推迟,完全融化时间提前...
大兴安岭处于欧亚大陆多年冻土带南缘,其多年冻土形成、发展和保存更多受制于植被、水分等局地因子的影响。采用钻探、探地雷达和冻土温度长期监测等手段研究发现,放牧活动会影响大兴安岭东坡新林林区活动层厚度,放牧活动比较强烈的地段,活动层可达2.5m,放牧区边缘至未放牧区域,活动层缩减至1.5m。塔头2013年11月2.0m处的地温仍然在0℃以上(0.04℃),当放牧行为终止及加漠公路改道后,2.0m处的温度开始逐渐恢复,温度由-0.12℃降到-0.69℃,1.5m处的温度则由0.17℃降到-0.42℃,2018年底塔头的活动层厚度已经小于1.5m。从地表植被类型上看,松树林、塔头和灌丛的活动层多年平均厚度分别为0.8m、1.3m和0.7m,近地表0.5m处的年平均地温为0.07℃、0.52℃和0.22℃,年变化深度处(11m)的年均温度为-1.34℃,-0.98℃和-2.19℃。从地温曲线类型上看,灌丛下的多年冻土比较稳定,地温曲线属于正梯度型。松树林和塔头下的冻土温度比较复杂,松树林地温曲线为偏负梯度型-零梯度型-偏正梯度型,塔头为负梯度型-扭曲型。在地表植被类型和人类活动的共同影响下,研究...
在全球气候持续变暖背景下,北极地区冻土退化、冰川退缩、海冰减少等导致了一系列的生态环境问题,同时也使得资源勘探开发与国际新航道开通成为可能,北极地区的重要性日益凸显。依据2009—2019年6月期间有关北极研究的408篇ESI高影响论文,对发文量、主要作者、研究机构、国家、研究方向等字段进行分析,从自然科学角度,宏观而概要地了解北极研究中最具影响力的研究力量、研究领域,为中国的北极研究提供最精要的科研信息整体分析,并通过内容分析揭示北极研究中的重要方面和中国在当前北极研究中存在的问题及或可行的策略途径。分析发现:美国引领并以绝对优势(论文数量、主要作者、机构、资助基金)占据北极研究领域。北极自然科学研究已形成以气候变暖为核心和背景,辐射相关海冰和海洋、生物与典型生态系统(生物多样性适应与保护、北方针叶林、苔原、微生物)、冰川退缩与冻土退化、大气天气与气候系统等领域的整体研究格局,呈现全面推进态势。研究已取得大量进展,研究手段呈现出大数据支持、模型运算为主的显著特征,但"不确定性"几乎渗透在其各个方面。中国以合作参与、外围相关、微量切入的形式开展北极研究,存在多重限制因素,我国或可利用已...
全球气候变化背景下,冻土将会发生显著变化,进而影响寒区生态和水文系统的物理、化学和生物过程,并诱发区域水资源恶化与生态功能退化,其中坡面冻土水文过程是物质和能量在寒区地表各圈层迁移转化的重要载体与基本单元。为此,基于"驱动-过程-机制"这一研究视角,从冻土退化及其水文过程响应、冻土水文过程及其局地因素影响、冻土水文过程机制及其影响模拟等三个方面,综述了国内外有关冻土退化影响下坡面水文过程研究方面的最新进展;同时,在总结了当前冻土水文过程研究不足的基础上,提出了如下建议:(1)更加注重坡面冻土水文过程要素观测与方法集成研究;(2)更加注重坡面冻土水文过程变化机理与耦合机制研究;(3)更加注重坡面冻土水文过程时空演化与效应评估研究。以期提升寒区流域径流形成演化的认知能力与径流变化的预测能力,并为寒区流域水资源稳定和适应性利用提供理论基础与科学对策。
采用非稳态热传导微分方程,应用数值模型建立了东北多年冻土退化模型,该模型对不同初始地温的50 a及100 a后温度场进行了模拟。年均地表温度分别取4个代表值,给定了年均地表温度的增温率及地表温度的年振幅。预报了50 a及100 a后发育多年冻土的厚度和活动层上限变化规律,给出了利用时间历程后处理方法预报冻土上限退化模型。
东北多年冻土属中高纬度多年冻土,对气候变化非常敏感。数据模型模拟表明,21世纪东北多年冻土区气温会持续上升,显著的变暖将导致多年冻土退化。东北多年冻土呈现自南向北的区域性退化趋势,多年冻土区南部表现为南界的北移、融区的扩大和多年冻土的消失,而北部表现为多年冻土下限的上移、活动层厚度增大及地温升高等。多年冻土的退化会导致寒区生态环境的恶化,如兴安落叶松占绝对优势的天然林带锐减,林带北移,沼泽湿地萎缩等。随着多年冻土的迅速退缩和变薄,原多年冻土中蕴藏的碳将释放出来,对气候变化产生积极的正反馈,加速变暖,并影响全球碳循环。多年冻土退化导致其热状态失稳而造成寒区基础设施损坏,并且影响冻土微生物、碳循环、寒区生态和水文等,而它们是区域气候变化的重要因子,也将成为未来多年冻土研究的重点。而这些研究都需要长期的基础数据作支撑,因此需要进一步完善冻土参数监测网络,用模型厘清气候变化与多年冻土退化及其环境效应之间的关系。
在气候变暖及人类活动的双重干扰下,疏勒河上游冻土发生了显著退化,如活动层厚度加大、植被退化等,而冻土退化对微生物的影响一直是科研人员关注的热点话题。以疏勒河上游不同季节(4月、6月、9月)、不同退化程度冻土为研究对象,研究了可培养细菌多样性特征。通过16S r DNA基因测序及构建系统发育树表明,研究区域可培养细菌归类为27个属,分属于α-变形菌门,γ-变形菌门,放线菌门,厚壁菌门和拟杆菌门,其中放线菌门为优势类群。从属水平来讲,可培养细菌以节杆菌属和微球菌属为主,其含量随冻土退化程度加深分别呈下降和升高趋势。土壤细菌多样性与环境因子的相关性分析表明,可培养细菌多样性与土壤含水量、总氮极显著正相关,与有机碳显著正相关。这些结果表明,伴随着冻土退化而发生的地上植被逆向演替过程中,青藏高原不同类型冻土间已产生较大的环境异质性如土壤碳氮及含水量,进一步可能导致冻土微生物多样性分异。研究结果为利用微生物综合评价青藏高原不同类型冻土的生态环境提供了数据基础。