隧道衬砌的服役性能对多年冻土隧道的安全至关重要。病害是影响衬砌服役性能的主要因素,多年冻土隧道衬砌病害主要包括隧道衬砌变形及开裂、隧道衬砌混凝土冻融劣化及隧道衬砌渗漏水结冰。隧道衬砌变形及开裂的主要原因有隧道环境、隧道设计及施工、衬砌材料等因素。病害防治措施主要包括建立可靠的防排水系统、采取合理的防冻保温措施及选用合理的衬砌结构等。通过选取合适的防治措施,可显著提高衬砌的服役性能。
隧道衬砌的服役性能对多年冻土隧道的安全至关重要。病害是影响衬砌服役性能的主要因素,多年冻土隧道衬砌病害主要包括隧道衬砌变形及开裂、隧道衬砌混凝土冻融劣化及隧道衬砌渗漏水结冰。隧道衬砌变形及开裂的主要原因有隧道环境、隧道设计及施工、衬砌材料等因素。病害防治措施主要包括建立可靠的防排水系统、采取合理的防冻保温措施及选用合理的衬砌结构等。通过选取合适的防治措施,可显著提高衬砌的服役性能。
隧道衬砌的服役性能对多年冻土隧道的安全至关重要。病害是影响衬砌服役性能的主要因素,多年冻土隧道衬砌病害主要包括隧道衬砌变形及开裂、隧道衬砌混凝土冻融劣化及隧道衬砌渗漏水结冰。隧道衬砌变形及开裂的主要原因有隧道环境、隧道设计及施工、衬砌材料等因素。病害防治措施主要包括建立可靠的防排水系统、采取合理的防冻保温措施及选用合理的衬砌结构等。通过选取合适的防治措施,可显著提高衬砌的服役性能。
隧道衬砌的服役性能对多年冻土隧道的安全至关重要。病害是影响衬砌服役性能的主要因素,多年冻土隧道衬砌病害主要包括隧道衬砌变形及开裂、隧道衬砌混凝土冻融劣化及隧道衬砌渗漏水结冰。隧道衬砌变形及开裂的主要原因有隧道环境、隧道设计及施工、衬砌材料等因素。病害防治措施主要包括建立可靠的防排水系统、采取合理的防冻保温措施及选用合理的衬砌结构等。通过选取合适的防治措施,可显著提高衬砌的服役性能。
隧道衬砌的服役性能对多年冻土隧道的安全至关重要。病害是影响衬砌服役性能的主要因素,多年冻土隧道衬砌病害主要包括隧道衬砌变形及开裂、隧道衬砌混凝土冻融劣化及隧道衬砌渗漏水结冰。隧道衬砌变形及开裂的主要原因有隧道环境、隧道设计及施工、衬砌材料等因素。病害防治措施主要包括建立可靠的防排水系统、采取合理的防冻保温措施及选用合理的衬砌结构等。通过选取合适的防治措施,可显著提高衬砌的服役性能。
隧道衬砌的服役性能对多年冻土隧道的安全至关重要。病害是影响衬砌服役性能的主要因素,多年冻土隧道衬砌病害主要包括隧道衬砌变形及开裂、隧道衬砌混凝土冻融劣化及隧道衬砌渗漏水结冰。隧道衬砌变形及开裂的主要原因有隧道环境、隧道设计及施工、衬砌材料等因素。病害防治措施主要包括建立可靠的防排水系统、采取合理的防冻保温措施及选用合理的衬砌结构等。通过选取合适的防治措施,可显著提高衬砌的服役性能。
隧道衬砌的服役性能对多年冻土隧道的安全至关重要。病害是影响衬砌服役性能的主要因素,多年冻土隧道衬砌病害主要包括隧道衬砌变形及开裂、隧道衬砌混凝土冻融劣化及隧道衬砌渗漏水结冰。隧道衬砌变形及开裂的主要原因有隧道环境、隧道设计及施工、衬砌材料等因素。病害防治措施主要包括建立可靠的防排水系统、采取合理的防冻保温措施及选用合理的衬砌结构等。通过选取合适的防治措施,可显著提高衬砌的服役性能。
处于高寒高海拔地区的浅埋隧道,由于冻土退化形成水(泥)囊,使得砂砾层被地下水不断侵入,导致隧道塌方,而采用普通的维护方案难以有效地进行风险控制。为解决这个问题,以景阳岭隧道出口浅埋段塌方事故为例,提出了“抗滑桩+冠梁”围护结构的处治方案,采用现场监测、有限元模拟等方法对该方案进行了验证与效果评价。还原围护结构施工的部分工序时,把模拟值与对应的现场实测值进行了对比。结果表明:结合地勘资料、超前地质探测报告及现场实际工况,认为围岩条件差、施工干扰是导致景阳岭隧道发生塌方的主要原因;模拟结果与实测结果吻合,表明数值模拟合理,具有对实际工程的可参考性;在增设抗滑桩+冠梁的施工方案后,初支结构的拱顶下沉、拱腰和拱脚的收敛分别为8.9,3,3.1 mm,原塌方轮廓线内的围岩变形最大值也不超过0.18 m,变形均符合设计规范的要求;初支结构受到的最大拉应力位于拱顶,为1.61 MPa,最大压应力位于拱腰,为2.75 MPa,受力均满足设计规范要求;初支结构的拱顶下沉、拱腰和拱脚的收敛分别为5.9,4.3,4.3 mm,最大变化速率0.1 mm/d,均满足原设计要求,表明该方案在实际工程中的治理效果良...
处于高寒高海拔地区的浅埋隧道,由于冻土退化形成水(泥)囊,使得砂砾层被地下水不断侵入,导致隧道塌方,而采用普通的维护方案难以有效地进行风险控制。为解决这个问题,以景阳岭隧道出口浅埋段塌方事故为例,提出了“抗滑桩+冠梁”围护结构的处治方案,采用现场监测、有限元模拟等方法对该方案进行了验证与效果评价。还原围护结构施工的部分工序时,把模拟值与对应的现场实测值进行了对比。结果表明:结合地勘资料、超前地质探测报告及现场实际工况,认为围岩条件差、施工干扰是导致景阳岭隧道发生塌方的主要原因;模拟结果与实测结果吻合,表明数值模拟合理,具有对实际工程的可参考性;在增设抗滑桩+冠梁的施工方案后,初支结构的拱顶下沉、拱腰和拱脚的收敛分别为8.9,3,3.1 mm,原塌方轮廓线内的围岩变形最大值也不超过0.18 m,变形均符合设计规范的要求;初支结构受到的最大拉应力位于拱顶,为1.61 MPa,最大压应力位于拱腰,为2.75 MPa,受力均满足设计规范要求;初支结构的拱顶下沉、拱腰和拱脚的收敛分别为5.9,4.3,4.3 mm,最大变化速率0.1 mm/d,均满足原设计要求,表明该方案在实际工程中的治理效果良...
处于高寒高海拔地区的浅埋隧道,由于冻土退化形成水(泥)囊,使得砂砾层被地下水不断侵入,导致隧道塌方,而采用普通的维护方案难以有效地进行风险控制。为解决这个问题,以景阳岭隧道出口浅埋段塌方事故为例,提出了“抗滑桩+冠梁”围护结构的处治方案,采用现场监测、有限元模拟等方法对该方案进行了验证与效果评价。还原围护结构施工的部分工序时,把模拟值与对应的现场实测值进行了对比。结果表明:结合地勘资料、超前地质探测报告及现场实际工况,认为围岩条件差、施工干扰是导致景阳岭隧道发生塌方的主要原因;模拟结果与实测结果吻合,表明数值模拟合理,具有对实际工程的可参考性;在增设抗滑桩+冠梁的施工方案后,初支结构的拱顶下沉、拱腰和拱脚的收敛分别为8.9,3,3.1 mm,原塌方轮廓线内的围岩变形最大值也不超过0.18 m,变形均符合设计规范的要求;初支结构受到的最大拉应力位于拱顶,为1.61 MPa,最大压应力位于拱腰,为2.75 MPa,受力均满足设计规范要求;初支结构的拱顶下沉、拱腰和拱脚的收敛分别为5.9,4.3,4.3 mm,最大变化速率0.1 mm/d,均满足原设计要求,表明该方案在实际工程中的治理效果良...