为研究饱和度对冻结红砂岩动态压缩性能及能量特性的影响,对饱和度分别为0,25%,50%,75%和100%的冻结红砂岩进行SHPB动态冲击压缩试验。研究结果表明:不同饱和度的冻结红砂岩破坏机制主要受未冻水弱化效应、冻结强化效应和冻胀损伤效应3种机制的影响;当饱和度低于25%时,未冻结合水对岩石的动态力学性能产生弱化作用;当饱和度介于25%~75%之间时,冻结强化作用占主导地位;当饱和度高于75%时,水冰相变导致的冻胀损伤占主导地位。冻结红砂岩的峰值强度、耗散能、能量利用率随饱和度的增加均呈先减小后增大再减小的三段式分布规律,且具有明显的应变率效应,而冻结红砂岩冲击压缩破坏的分形维数随饱和度的增加呈先上升后下降再上升的趋势。冻结红砂岩的冲击压缩力学性质及其能量特征均与冻结强化和冻胀损伤的相互作用密切相关。
为研究饱和度对冻结红砂岩动态压缩性能及能量特性的影响,对饱和度分别为0,25%,50%,75%和100%的冻结红砂岩进行SHPB动态冲击压缩试验。研究结果表明:不同饱和度的冻结红砂岩破坏机制主要受未冻水弱化效应、冻结强化效应和冻胀损伤效应3种机制的影响;当饱和度低于25%时,未冻结合水对岩石的动态力学性能产生弱化作用;当饱和度介于25%~75%之间时,冻结强化作用占主导地位;当饱和度高于75%时,水冰相变导致的冻胀损伤占主导地位。冻结红砂岩的峰值强度、耗散能、能量利用率随饱和度的增加均呈先减小后增大再减小的三段式分布规律,且具有明显的应变率效应,而冻结红砂岩冲击压缩破坏的分形维数随饱和度的增加呈先上升后下降再上升的趋势。冻结红砂岩的冲击压缩力学性质及其能量特征均与冻结强化和冻胀损伤的相互作用密切相关。
为研究饱和度对冻结红砂岩动态压缩性能及能量特性的影响,对饱和度分别为0,25%,50%,75%和100%的冻结红砂岩进行SHPB动态冲击压缩试验。研究结果表明:不同饱和度的冻结红砂岩破坏机制主要受未冻水弱化效应、冻结强化效应和冻胀损伤效应3种机制的影响;当饱和度低于25%时,未冻结合水对岩石的动态力学性能产生弱化作用;当饱和度介于25%~75%之间时,冻结强化作用占主导地位;当饱和度高于75%时,水冰相变导致的冻胀损伤占主导地位。冻结红砂岩的峰值强度、耗散能、能量利用率随饱和度的增加均呈先减小后增大再减小的三段式分布规律,且具有明显的应变率效应,而冻结红砂岩冲击压缩破坏的分形维数随饱和度的增加呈先上升后下降再上升的趋势。冻结红砂岩的冲击压缩力学性质及其能量特征均与冻结强化和冻胀损伤的相互作用密切相关。
岩石冻胀过程中的水分迁移研究是冻岩力学研究的核心。首先阐释了薄膜水迁移理论、毛细理论、分凝冰理论3种主流的水分迁移理论,对3种理论的应用情况进行了介绍。从原位冻结、水分迁移冻结产生冻胀力的角度入手,对冻胀力解析模型研究、试验研究、数值模拟研究3个方面的研究进展进行概述。分别就解析模型中单一椭圆形裂隙冻胀力及寒区隧道3类典型冻胀力的计算、试验研究中冻胀力量值的影响因素及冻融循环中冻胀力的演化特征、数值模拟中单裂隙冻胀力及寒区隧道冻胀力模拟问题,展开了分析并指出了存在的不足之处。提出在冻胀力的解析模型研究和数值模拟研究中应充分考虑多种情况的耦合作用和水分迁移过程,以及在试验研究中开展测量方法的改进等研究建议。
岩石冻胀过程中的水分迁移研究是冻岩力学研究的核心。首先阐释了薄膜水迁移理论、毛细理论、分凝冰理论3种主流的水分迁移理论,对3种理论的应用情况进行了介绍。从原位冻结、水分迁移冻结产生冻胀力的角度入手,对冻胀力解析模型研究、试验研究、数值模拟研究3个方面的研究进展进行概述。分别就解析模型中单一椭圆形裂隙冻胀力及寒区隧道3类典型冻胀力的计算、试验研究中冻胀力量值的影响因素及冻融循环中冻胀力的演化特征、数值模拟中单裂隙冻胀力及寒区隧道冻胀力模拟问题,展开了分析并指出了存在的不足之处。提出在冻胀力的解析模型研究和数值模拟研究中应充分考虑多种情况的耦合作用和水分迁移过程,以及在试验研究中开展测量方法的改进等研究建议。
岩石冻胀过程中的水分迁移研究是冻岩力学研究的核心。首先阐释了薄膜水迁移理论、毛细理论、分凝冰理论3种主流的水分迁移理论,对3种理论的应用情况进行了介绍。从原位冻结、水分迁移冻结产生冻胀力的角度入手,对冻胀力解析模型研究、试验研究、数值模拟研究3个方面的研究进展进行概述。分别就解析模型中单一椭圆形裂隙冻胀力及寒区隧道3类典型冻胀力的计算、试验研究中冻胀力量值的影响因素及冻融循环中冻胀力的演化特征、数值模拟中单裂隙冻胀力及寒区隧道冻胀力模拟问题,展开了分析并指出了存在的不足之处。提出在冻胀力的解析模型研究和数值模拟研究中应充分考虑多种情况的耦合作用和水分迁移过程,以及在试验研究中开展测量方法的改进等研究建议。
为了研究寒区裂隙冻岩隧道冻胀力并建立合理的计算模型,以川藏公路雀儿山隧道为工程依托,组合利用水压力计、土压力盒和多点铂电阻温度传感器进行冻胀力原位测试,考虑静水压力,提出了裂隙成环贯通原位冻胀时的隧道宏观冻胀力理论模型,并将计算结果与原位测试结果进行了比较分析。研究结果表明:现场原位测试方法考虑了岩-水-冰在冻结过程中随时间和温度的变化特征,避免了对裂隙岩石细观结构模型的讨论,方案合理且易于实施;裂隙岩石冻结前水压力随径向深度增加而线性减小,径向1.5~2m围岩内裂隙水挤出形成急剧增压区间,靠近结构处水压力降到最低;原位测试得到冻胀压力0.615~3.355MPa,空间分布以拱顶处最小,拱腰处最大,冻胀力模型计算得到的冻胀压力约0.46MPa,去除水压力,裂隙成环贯通宏观冻胀力理论模型计算结果接近于工程实际。
为了研究寒区裂隙冻岩隧道冻胀力并建立合理的计算模型,以川藏公路雀儿山隧道为工程依托,组合利用水压力计、土压力盒和多点铂电阻温度传感器进行冻胀力原位测试,考虑静水压力,提出了裂隙成环贯通原位冻胀时的隧道宏观冻胀力理论模型,并将计算结果与原位测试结果进行了比较分析。研究结果表明:现场原位测试方法考虑了岩-水-冰在冻结过程中随时间和温度的变化特征,避免了对裂隙岩石细观结构模型的讨论,方案合理且易于实施;裂隙岩石冻结前水压力随径向深度增加而线性减小,径向1.5~2m围岩内裂隙水挤出形成急剧增压区间,靠近结构处水压力降到最低;原位测试得到冻胀压力0.615~3.355MPa,空间分布以拱顶处最小,拱腰处最大,冻胀力模型计算得到的冻胀压力约0.46MPa,去除水压力,裂隙成环贯通宏观冻胀力理论模型计算结果接近于工程实际。
为了研究寒区裂隙冻岩隧道冻胀力并建立合理的计算模型,以川藏公路雀儿山隧道为工程依托,组合利用水压力计、土压力盒和多点铂电阻温度传感器进行冻胀力原位测试,考虑静水压力,提出了裂隙成环贯通原位冻胀时的隧道宏观冻胀力理论模型,并将计算结果与原位测试结果进行了比较分析。研究结果表明:现场原位测试方法考虑了岩-水-冰在冻结过程中随时间和温度的变化特征,避免了对裂隙岩石细观结构模型的讨论,方案合理且易于实施;裂隙岩石冻结前水压力随径向深度增加而线性减小,径向1.5~2m围岩内裂隙水挤出形成急剧增压区间,靠近结构处水压力降到最低;原位测试得到冻胀压力0.615~3.355MPa,空间分布以拱顶处最小,拱腰处最大,冻胀力模型计算得到的冻胀压力约0.46MPa,去除水压力,裂隙成环贯通宏观冻胀力理论模型计算结果接近于工程实际。