从工程应用角度出发,基于安全、合理、便捷的原则,探讨高海拔地区冻土深度的估算方法。通过对比现有多种方法,在一种基于气温的经验公式的基础上,提出了考虑海拔气温修正的冻土深度估算方法。算例表明计算结果精度较高,但也可能与土壤性质较为相似有关。为缺乏实测参考的高海拔地区冻土深度取值提供了一种简便的估算方法,当最大冻土深度对工程有重大影响时,建议可在估算结果的基础上适当增加。
季节冻土在高寒山区广泛分布,其冻融过程会对水文水资源和生态环境产生深刻影响。研究气候变化背景下高寒山区季节冻土冻融特征参数变化及影响机理,可为高寒山区水资源管理和生态保护提供科学依据。本文选择天山南坡作为研究区,基于13个气象站点1958年以来季节冻土冻融参数(最大冻深、冻结期、始冻日、解冻日)、气温、地表温度、降雨和积雪等数据,使用空间分析和多元线性回归统计等方法对冻融参数的时空变化特征进行分析,量化不同气候因素对季节冻土冻融变化的影响权重。结果表明,季节冻土最大冻深在(48.5±11.4)~(96.8±8.5) cm之间,冻结天数在(102±10)~(141±14) d之间,多年平均始冻日在11月7日至19日之间,多年平均解冻日在3月1日至28日之间。1950年代至2010年代期间,始冻日逐渐推迟,解冻日逐渐提前,冻结天数缩短。空间分布上,最大冻深有“海拔高,最大冻深大”的规律;空间变化趋势上,最大冻深在研究区中部显著增加;冻结天数在研究区内大范围显著缩短。季节冻土冻融变化与气温相关性最强,温度(气温和地表温度)是季节冻土冻融变化的主导因子。定量评价发现,气温影响占比(24.1±3...
大量工程实践表明,在寒冷山区公路建设过程中,路基阴阳坡效应对冻土区路基的稳定性具有重要影响。以甘肃省南部山区季节冻土路基为例,基于新建宕昌—迭部二级公路试验段的现场监测资料,分析了季节冻土山区公路路基阴阳面的地温和变形差异,提出针对性的两种新型防治措施——措施A(阴坡侧路基下半幅铺设10 cm厚XPS板,阳坡侧路基下半幅铺设6 cm厚XPS板)和措施B(路基下满幅+阴坡坡面铺设6 cm厚XPS板),并通过数值模拟分析了这两种措施控制路基阴阳坡效应的效果。结果表明,在甘肃南部季节冻土山区,山体遮挡作用使公路路基阴阳坡发生转换,对路基横向地温的影响不容忽视,试验段K18+180段阴坡路肩与阳坡路肩地温最大相差6℃左右,公路路基横向地温存在显著的阴阳坡效应。地温的横向差异导致公路路基土体冻深和冻胀变形的横向差异,两个试验段路基中心与阳坡路肩的最大季节冻深在第一个、第二个冻结期内均相差约0.8 m和0.9 m,K18+180段阴阳坡路肩冻胀量差值的最大值为2.8 mm,出现在春融初期。路堤高度为1.0 m、2.0 m时,措施A和措施B都能显著地减小公路路基阴阳坡温度差异,并且控制效果明显优于普...
针对西宁至成都高铁若尔盖湿地段路基工程,基于传热方程、水分迁移方程与力场平衡方程建立季节冻土区高铁路基冻胀的水热力耦合模型,对比分析普通路基和保温路基的温度、水分和位移特征差异。结果表明:保温层有效降低路基的冻胀量,同时减小左右路肩的冻胀量差;保温路基与普通路基的总含水量分布相似,由于保温层将冻结锋面完全阻止在保温层内,其冻深远小于普通路基。
季节性浅冻地区由于冻土较浅,冻结一般在路基外部进行,路基在冻融循环过程中形成冻土核和未冻土核,从而使路基产生不均匀沉降变形。参考当地标准冻深,设想将路基分为冻融区和非冻区,在两区间设导流导温通道从而进行冷热能量交换,并在非冻区外设隔水层阻隔自由水进入,路基外部冻融区实现冻融循环功能,非冻区主要承担道路传来荷载起承重作用。
土体的冻胀会引起地表不均匀变形,导致大量建筑及设施被破坏,一直以来人们都通过研究冻胀机理来探索抑制冻胀产生与发展的方法。采用粉质黏土为重塑土样,模拟冻胀条件为开放系统下的一维冻胀条件,采用控制冻结深度的间歇冻结模式对不同初始含水率和不同最低冻胀温度的土样进行冻融循环模拟后,对最终冻胀量进行测试。试验结果表明,初始含水率与试样冻胀量呈正比关系,温度与最终冻胀量呈反比关系。
针对不同深度的冻土导致路基同一断面阴阳坡产生横向的沉降差问题,将经过冻融循环试验后的粉砂土进行固结压缩试验,并运用Abaqus软件将试验结果代入作为边界条件,进行路基阴阳坡沉降模拟,通过路基差异沉降及变坡率判断路基的稳定性。根据试验和有限元仿真分析结果,对吉林省松原市石化大街路基两侧边坡采用掺入泥炭的粘性土进行覆盖保温、沿道路路基纵向定距设置通风管的方法,可以有效防止路面因路基横向差异产生的沉降而发生破坏。
本文收集并整理了东北地区143个气象站有冻土观测记录以来的冻土数据资料,分析了东北地区冻土深度的时空变化及其分布特征。结果表明,东北地区冻土深度表现为随纬度升高而递增,即纬度越高冻土越深。从各年代100 cm和150 cm冻深线来看,冻土呈明显变浅趋势,且越高纬冻土退化越为严重。在气候变暖的情况下,20世纪70年出现极端最大冻土深度的气象站最多,90年代没有气象站出现极端最大冻土,21世纪00年代、10年代仍有极端最大冻结深度出现,且10年代较00年代出现的站点偏多,说明即使气候变暖但是极端情况仍然出现,且可能有愈加严重趋势。平均气温与最大冻土深度变化存在明显的负相关,即随着气候变暖,冻土期缩短、冻土初日推迟、翌年冻土消融日提前的现象。东北地区除黑龙江最北端为多年冻土区外,其余地区均为季节性冻土区。
为了研究季节性冻土区不同保温措施下渠道冻胀变化规律,在一个冻融周期内对河套灌区杨家河南边干渠进行现场测试,针对不同保温措施下的冻深与冻胀量进行了分析。结果表明,阳坡与阴坡聚氨酯和聚苯乙烯保温措施条件下6 cm厚的保温效果均优于4 cm厚的保温效果,阳坡4 cm厚的聚氨酯保温效果优于4 cm厚的聚苯乙烯保温效果,而阴坡4 cm厚的聚氨酯保温效果劣于4 cm厚的聚苯乙烯保温效果。从水力条件、节水效益、投资成本等方面对比分析混凝土渠道与玻璃钢渠道的应用性,玻璃钢渠道可减少拆除重建费与保温措施费等费用,且综合投资与混凝土渠道相差不多,随着水资源需求量的急剧增大,玻璃钢渠道具有较好的应用前景。
依据热传导和质量迁移理论,建立渠基冻土温度场、水分场和应力场耦合数学模型,分析了影响季节冻土区渠基土体冻结的核心因素温度和水分运移量,提出以冻结期渠基土体温度和水分迁移量为变量,建立渠基土体冻深和冻胀量预测模型。借助于季节性冻融条件下梯形混凝土衬砌渠道原型观测成果,观测了冻结期渠基以下5 cm处土体温度以及水分迁移量,研究了季节冻融渠基温度和水分运移及其诱发的冻深发展和冻胀变形的变化。经检验,预测曲线与实测曲线基本一致,且满足误差要求,用冻结期土体温度和水分迁移量来预测冻深、冻胀的方法准确可行。