冻结层上水是寒区冻土水文循环的关键层,揭示其动态演变规律,对认知冻土区地下水运移机制及精准预测具有重要科学意义。然而,由于多年冻土区原位监测数据的匮乏,以及非线性适应型水文过程模型构建的缺失,冻结层上水动态时空预测精度难以满足科学研究和工程实践需求。本研究以青藏高原风火山小流域(海拔4063~5398 m)为典型研究区,基于2021—2023年原位观测气象数据(精度±0.1℃/±0.1 mm)、逐日土壤水热(精度±1℃/±0.03 m3·m-3)及冻结层上水位(精度±0.14 cm)原位监测数据,揭示坡面尺度冻结层上水动态的水热时空协同机制;集成气温、降水、土壤温湿度和初始水位等多要素,构建及评估基于长短期记忆神经网络(LSTM)的冻土水文预测模型的适应性。研究发现:(1)冻结层上水动态具有显著季节分异特征,其水位波动(年变幅0~1.53 m)与活动层土壤温湿度呈现一致性,基于Boltzmann函数的平均拟合优度为0.90。(2)所构建的基于LSTM方法的冻结层上水位预测模型(学习率0.002)在坡面多梯度验证中表现出卓越性能,平均纳什效率系...
冻结层上水是寒区冻土水文循环的关键层,揭示其动态演变规律,对认知冻土区地下水运移机制及精准预测具有重要科学意义。然而,由于多年冻土区原位监测数据的匮乏,以及非线性适应型水文过程模型构建的缺失,冻结层上水动态时空预测精度难以满足科学研究和工程实践需求。本研究以青藏高原风火山小流域(海拔4063~5398 m)为典型研究区,基于2021—2023年原位观测气象数据(精度±0.1℃/±0.1 mm)、逐日土壤水热(精度±1℃/±0.03 m3·m-3)及冻结层上水位(精度±0.14 cm)原位监测数据,揭示坡面尺度冻结层上水动态的水热时空协同机制;集成气温、降水、土壤温湿度和初始水位等多要素,构建及评估基于长短期记忆神经网络(LSTM)的冻土水文预测模型的适应性。研究发现:(1)冻结层上水动态具有显著季节分异特征,其水位波动(年变幅0~1.53 m)与活动层土壤温湿度呈现一致性,基于Boltzmann函数的平均拟合优度为0.90。(2)所构建的基于LSTM方法的冻结层上水位预测模型(学习率0.002)在坡面多梯度验证中表现出卓越性能,平均纳什效率系...
冻结层上水是寒区冻土水文循环的关键层,揭示其动态演变规律,对认知冻土区地下水运移机制及精准预测具有重要科学意义。然而,由于多年冻土区原位监测数据的匮乏,以及非线性适应型水文过程模型构建的缺失,冻结层上水动态时空预测精度难以满足科学研究和工程实践需求。本研究以青藏高原风火山小流域(海拔4063~5398 m)为典型研究区,基于2021—2023年原位观测气象数据(精度±0.1℃/±0.1 mm)、逐日土壤水热(精度±1℃/±0.03 m3·m-3)及冻结层上水位(精度±0.14 cm)原位监测数据,揭示坡面尺度冻结层上水动态的水热时空协同机制;集成气温、降水、土壤温湿度和初始水位等多要素,构建及评估基于长短期记忆神经网络(LSTM)的冻土水文预测模型的适应性。研究发现:(1)冻结层上水动态具有显著季节分异特征,其水位波动(年变幅0~1.53 m)与活动层土壤温湿度呈现一致性,基于Boltzmann函数的平均拟合优度为0.90。(2)所构建的基于LSTM方法的冻结层上水位预测模型(学习率0.002)在坡面多梯度验证中表现出卓越性能,平均纳什效率系...
冻结层上水是寒区冻土水文循环的关键层,揭示其动态演变规律,对认知冻土区地下水运移机制及精准预测具有重要科学意义。然而,由于多年冻土区原位监测数据的匮乏,以及非线性适应型水文过程模型构建的缺失,冻结层上水动态时空预测精度难以满足科学研究和工程实践需求。本研究以青藏高原风火山小流域(海拔4063~5398 m)为典型研究区,基于2021—2023年原位观测气象数据(精度±0.1℃/±0.1 mm)、逐日土壤水热(精度±1℃/±0.03 m3·m-3)及冻结层上水位(精度±0.14 cm)原位监测数据,揭示坡面尺度冻结层上水动态的水热时空协同机制;集成气温、降水、土壤温湿度和初始水位等多要素,构建及评估基于长短期记忆神经网络(LSTM)的冻土水文预测模型的适应性。研究发现:(1)冻结层上水动态具有显著季节分异特征,其水位波动(年变幅0~1.53 m)与活动层土壤温湿度呈现一致性,基于Boltzmann函数的平均拟合优度为0.90。(2)所构建的基于LSTM方法的冻结层上水位预测模型(学习率0.002)在坡面多梯度验证中表现出卓越性能,平均纳什效率系...
冻结层上水是寒区冻土水文循环的关键层,揭示其动态演变规律,对认知冻土区地下水运移机制及精准预测具有重要科学意义。然而,由于多年冻土区原位监测数据的匮乏,以及非线性适应型水文过程模型构建的缺失,冻结层上水动态时空预测精度难以满足科学研究和工程实践需求。本研究以青藏高原风火山小流域(海拔4063~5398 m)为典型研究区,基于2021—2023年原位观测气象数据(精度±0.1℃/±0.1 mm)、逐日土壤水热(精度±1℃/±0.03 m3·m-3)及冻结层上水位(精度±0.14 cm)原位监测数据,揭示坡面尺度冻结层上水动态的水热时空协同机制;集成气温、降水、土壤温湿度和初始水位等多要素,构建及评估基于长短期记忆神经网络(LSTM)的冻土水文预测模型的适应性。研究发现:(1)冻结层上水动态具有显著季节分异特征,其水位波动(年变幅0~1.53 m)与活动层土壤温湿度呈现一致性,基于Boltzmann函数的平均拟合优度为0.90。(2)所构建的基于LSTM方法的冻结层上水位预测模型(学习率0.002)在坡面多梯度验证中表现出卓越性能,平均纳什效率系...
冻结层上水是寒区冻土水文循环的关键层,揭示其动态演变规律,对认知冻土区地下水运移机制及精准预测具有重要科学意义。然而,由于多年冻土区原位监测数据的匮乏,以及非线性适应型水文过程模型构建的缺失,冻结层上水动态时空预测精度难以满足科学研究和工程实践需求。本研究以青藏高原风火山小流域(海拔4063~5398 m)为典型研究区,基于2021—2023年原位观测气象数据(精度±0.1℃/±0.1 mm)、逐日土壤水热(精度±1℃/±0.03 m3·m-3)及冻结层上水位(精度±0.14 cm)原位监测数据,揭示坡面尺度冻结层上水动态的水热时空协同机制;集成气温、降水、土壤温湿度和初始水位等多要素,构建及评估基于长短期记忆神经网络(LSTM)的冻土水文预测模型的适应性。研究发现:(1)冻结层上水动态具有显著季节分异特征,其水位波动(年变幅0~1.53 m)与活动层土壤温湿度呈现一致性,基于Boltzmann函数的平均拟合优度为0.90。(2)所构建的基于LSTM方法的冻结层上水位预测模型(学习率0.002)在坡面多梯度验证中表现出卓越性能,平均纳什效率系...
冻结层上水是地下水的重要组成部分,与多年冻土区路基稳定性密切相关。为明确冻结层上水与冻土路基之间的作用关系,通过梳理多年冻土区地下水研究进展,发现冻结层上水温度及含水率随活动层的季节性冻融而变化,并由此改变地表水和地下水循环中的水热平衡。冻结层上水的携热流动,加速了多年冻土的退化过程,并严重威胁上覆工程建筑物的稳定性。通过分析冻结层上水的运移、发展模式,建议采用新型防排水技术来处置冻结层上水,研究成果可为冻结层上水相关研究提供理论参考。
冻结层上水是地下水的重要组成部分,与多年冻土区路基稳定性密切相关。为明确冻结层上水与冻土路基之间的作用关系,通过梳理多年冻土区地下水研究进展,发现冻结层上水温度及含水率随活动层的季节性冻融而变化,并由此改变地表水和地下水循环中的水热平衡。冻结层上水的携热流动,加速了多年冻土的退化过程,并严重威胁上覆工程建筑物的稳定性。通过分析冻结层上水的运移、发展模式,建议采用新型防排水技术来处置冻结层上水,研究成果可为冻结层上水相关研究提供理论参考。
为了研究冻土斜坡路基中冻结层上水渗流对斜坡稳定性的影响,本文基于强度折减法、莫尔—库仑屈服准则和达西定律建立数值模拟模型,对路基修筑前后、缓坡陡坡工况下的冻结层上水渗流场和土体变形进行了模拟计算。结果表明:路基修筑改变了渗流路径和渗流速度。受路基传热的影响,路基下多年冻土产生融化,冻土上限有所下降并形成融化槽。冻土上限界面是潜在的滑移面,斜坡坡度越大,多年冻土上限融化下降的深度越大,产生塑性变形而滑动失稳的可能性越大。建议做好路基排水,避免水分在路基坡脚聚集,以提高路基稳定性。
为了研究冻土斜坡路基中冻结层上水渗流对斜坡稳定性的影响,本文基于强度折减法、莫尔—库仑屈服准则和达西定律建立数值模拟模型,对路基修筑前后、缓坡陡坡工况下的冻结层上水渗流场和土体变形进行了模拟计算。结果表明:路基修筑改变了渗流路径和渗流速度。受路基传热的影响,路基下多年冻土产生融化,冻土上限有所下降并形成融化槽。冻土上限界面是潜在的滑移面,斜坡坡度越大,多年冻土上限融化下降的深度越大,产生塑性变形而滑动失稳的可能性越大。建议做好路基排水,避免水分在路基坡脚聚集,以提高路基稳定性。