季节冻土在高寒山区广泛分布,其冻融过程会对水文水资源和生态环境产生深刻影响。研究气候变化背景下高寒山区季节冻土冻融特征参数变化及影响机理,可为高寒山区水资源管理和生态保护提供科学依据。本文选择天山南坡作为研究区,基于13个气象站点1958年以来季节冻土冻融参数(最大冻深、冻结期、始冻日、解冻日)、气温、地表温度、降雨和积雪等数据,使用空间分析和多元线性回归统计等方法对冻融参数的时空变化特征进行分析,量化不同气候因素对季节冻土冻融变化的影响权重。结果表明,季节冻土最大冻深在(48.5±11.4)~(96.8±8.5) cm之间,冻结天数在(102±10)~(141±14) d之间,多年平均始冻日在11月7日至19日之间,多年平均解冻日在3月1日至28日之间。1950年代至2010年代期间,始冻日逐渐推迟,解冻日逐渐提前,冻结天数缩短。空间分布上,最大冻深有“海拔高,最大冻深大”的规律;空间变化趋势上,最大冻深在研究区中部显著增加;冻结天数在研究区内大范围显著缩短。季节冻土冻融变化与气温相关性最强,温度(气温和地表温度)是季节冻土冻融变化的主导因子。定量评价发现,气温影响占比(24.1±3...
季节冻土在高寒山区广泛分布,其冻融过程会对水文水资源和生态环境产生深刻影响。研究气候变化背景下高寒山区季节冻土冻融特征参数变化及影响机理,可为高寒山区水资源管理和生态保护提供科学依据。本文选择天山南坡作为研究区,基于13个气象站点1958年以来季节冻土冻融参数(最大冻深、冻结期、始冻日、解冻日)、气温、地表温度、降雨和积雪等数据,使用空间分析和多元线性回归统计等方法对冻融参数的时空变化特征进行分析,量化不同气候因素对季节冻土冻融变化的影响权重。结果表明,季节冻土最大冻深在(48.5±11.4)~(96.8±8.5) cm之间,冻结天数在(102±10)~(141±14) d之间,多年平均始冻日在11月7日至19日之间,多年平均解冻日在3月1日至28日之间。1950年代至2010年代期间,始冻日逐渐推迟,解冻日逐渐提前,冻结天数缩短。空间分布上,最大冻深有“海拔高,最大冻深大”的规律;空间变化趋势上,最大冻深在研究区中部显著增加;冻结天数在研究区内大范围显著缩短。季节冻土冻融变化与气温相关性最强,温度(气温和地表温度)是季节冻土冻融变化的主导因子。定量评价发现,气温影响占比(24.1±3...
季节冻土在高寒山区广泛分布,其冻融过程会对水文水资源和生态环境产生深刻影响。研究气候变化背景下高寒山区季节冻土冻融特征参数变化及影响机理,可为高寒山区水资源管理和生态保护提供科学依据。本文选择天山南坡作为研究区,基于13个气象站点1958年以来季节冻土冻融参数(最大冻深、冻结期、始冻日、解冻日)、气温、地表温度、降雨和积雪等数据,使用空间分析和多元线性回归统计等方法对冻融参数的时空变化特征进行分析,量化不同气候因素对季节冻土冻融变化的影响权重。结果表明,季节冻土最大冻深在(48.5±11.4)~(96.8±8.5) cm之间,冻结天数在(102±10)~(141±14) d之间,多年平均始冻日在11月7日至19日之间,多年平均解冻日在3月1日至28日之间。1950年代至2010年代期间,始冻日逐渐推迟,解冻日逐渐提前,冻结天数缩短。空间分布上,最大冻深有“海拔高,最大冻深大”的规律;空间变化趋势上,最大冻深在研究区中部显著增加;冻结天数在研究区内大范围显著缩短。季节冻土冻融变化与气温相关性最强,温度(气温和地表温度)是季节冻土冻融变化的主导因子。定量评价发现,气温影响占比(24.1±3...
青海三江源区是全球气候变化的敏感区和生态环境脆弱区,目前正面临着冻土退化的问题。本研究基于三江源区18个国家气象站1961—2021年气象观测资料,对气候变暖前后季节冻土冻融特征进行对比分析。结果表明:三江源区年平均气温为-0.34℃,呈东高西低分布,总体以0.38℃·(10a)-1的速率上升,并在1997年发生突变,突变后气温显著升高。平均年最大季节冻结深度为142.5 cm,自西北向东南减小,总体以2.4 cm·(10a)-1速率退化,与变暖前相比减少了11 cm。平均地表冻结初日为10月24日,以1.0 d·(10a)-1速率推迟,平均地表冻结终日为5月18日,以3.3 d·(10a)-1速率提前,与变暖前相比,地表冻结终日提前了12 d,地表冻结初日推迟了14 d。季节冻土平均冻结时间为133.9 d,呈西高东低分布,总体以1.9 d·(10a)-1速率减少,与变暖前相比减少了8.8 d。年最大冻结深度及冻结时间分别在2004年和2002年发生突变,相比气温均有一定滞后...
青海三江源区是全球气候变化的敏感区和生态环境脆弱区,目前正面临着冻土退化的问题。本研究基于三江源区18个国家气象站1961—2021年气象观测资料,对气候变暖前后季节冻土冻融特征进行对比分析。结果表明:三江源区年平均气温为-0.34℃,呈东高西低分布,总体以0.38℃·(10a)-1的速率上升,并在1997年发生突变,突变后气温显著升高。平均年最大季节冻结深度为142.5 cm,自西北向东南减小,总体以2.4 cm·(10a)-1速率退化,与变暖前相比减少了11 cm。平均地表冻结初日为10月24日,以1.0 d·(10a)-1速率推迟,平均地表冻结终日为5月18日,以3.3 d·(10a)-1速率提前,与变暖前相比,地表冻结终日提前了12 d,地表冻结初日推迟了14 d。季节冻土平均冻结时间为133.9 d,呈西高东低分布,总体以1.9 d·(10a)-1速率减少,与变暖前相比减少了8.8 d。年最大冻结深度及冻结时间分别在2004年和2002年发生突变,相比气温均有一定滞后...
青海三江源区是全球气候变化的敏感区和生态环境脆弱区,目前正面临着冻土退化的问题。本研究基于三江源区18个国家气象站1961—2021年气象观测资料,对气候变暖前后季节冻土冻融特征进行对比分析。结果表明:三江源区年平均气温为-0.34℃,呈东高西低分布,总体以0.38℃·(10a)-1的速率上升,并在1997年发生突变,突变后气温显著升高。平均年最大季节冻结深度为142.5 cm,自西北向东南减小,总体以2.4 cm·(10a)-1速率退化,与变暖前相比减少了11 cm。平均地表冻结初日为10月24日,以1.0 d·(10a)-1速率推迟,平均地表冻结终日为5月18日,以3.3 d·(10a)-1速率提前,与变暖前相比,地表冻结终日提前了12 d,地表冻结初日推迟了14 d。季节冻土平均冻结时间为133.9 d,呈西高东低分布,总体以1.9 d·(10a)-1速率减少,与变暖前相比减少了8.8 d。年最大冻结深度及冻结时间分别在2004年和2002年发生突变,相比气温均有一定滞后...
氮(N)是高山和极地生态系统重要的限制性生长因子。目前对冻土区植物N利用机制的研究主要集中于完全融化期,而冻融循环期植物N吸收策略仍存在不确定性。以高寒紫花针茅为研究对象,分别在冻结期(晚秋)和融化期(早春)采用同位素示踪技术,分析植物对(15NH4)2SO4和Na15NO3的吸收量与偏好动态变化。研究结果显示冻结期紫花针茅冠层生长已停滞,融化期冠层尚未返青,但根系和立枯均可以吸收同化15N,具备吸收养分的需求。融化期紫花针茅15N在标记21天后15N-NH+4和15N-NO-3的总回收率分别为4.44%和6.91%,而冻结期紫花针茅在15N标记21天后15N-NH+4和15...
氮(N)是高山和极地生态系统重要的限制性生长因子。目前对冻土区植物N利用机制的研究主要集中于完全融化期,而冻融循环期植物N吸收策略仍存在不确定性。以高寒紫花针茅为研究对象,分别在冻结期(晚秋)和融化期(早春)采用同位素示踪技术,分析植物对(15NH4)2SO4和Na15NO3的吸收量与偏好动态变化。研究结果显示冻结期紫花针茅冠层生长已停滞,融化期冠层尚未返青,但根系和立枯均可以吸收同化15N,具备吸收养分的需求。融化期紫花针茅15N在标记21天后15N-NH+4和15N-NO-3的总回收率分别为4.44%和6.91%,而冻结期紫花针茅在15N标记21天后15N-NH+4和15...
氮(N)是高山和极地生态系统重要的限制性生长因子。目前对冻土区植物N利用机制的研究主要集中于完全融化期,而冻融循环期植物N吸收策略仍存在不确定性。以高寒紫花针茅为研究对象,分别在冻结期(晚秋)和融化期(早春)采用同位素示踪技术,分析植物对(15NH4)2SO4和Na15NO3的吸收量与偏好动态变化。研究结果显示冻结期紫花针茅冠层生长已停滞,融化期冠层尚未返青,但根系和立枯均可以吸收同化15N,具备吸收养分的需求。融化期紫花针茅15N在标记21天后15N-NH+4和15N-NO-3的总回收率分别为4.44%和6.91%,而冻结期紫花针茅在15N标记21天后15N-NH+4和15...
土壤温度和含水量是影响可溶性有机碳(DOC)变化的重要因素。然而,多年冻土泥炭地土壤DOC变化对秋季冻结期土壤水热变化的响应尚不明确。本研究选取大兴安岭3种多年冻土泥炭地[小叶章泥炭地(CP)、兴安落叶松-泥炭藓泥炭地(LP)、白毛羊胡子苔草泥炭地(EP)]作为研究对象,开展野外原位试验探究秋季冻结期土壤水热变化对多年冻土泥炭地土壤DOC变化的影响。结果表明:秋季冻结期土壤DOC含量表现为EP>CP>LP,平均含量分别为83.99、45.75和43.13mg·L-1。在秋季冻结前期3种类型多年冻土泥炭地土壤DOC含量均呈波动下降趋势,中、后期CP,LP土壤DOC变化较平缓。在秋季冻结前期,CP整体土壤DOC含量随浅层土壤温度的降低而减少;在后期CP浅层和整体土壤DOC含量随浅层土壤含水量的增加而增加。在秋季冻结中期,LP浅层土壤温度升高和含水量的减少,降低了土壤DOC含量;LP整体土壤DOC的变化随着浅层温度的升高逐渐降低。在秋季冻结后期,EP深层和整体土壤DOC含量随深层含水量增加而增加。在整个秋季冻结期,LP浅层土壤DOC主要受地表温度驱动,深层土...