为探究盾构隧道长联络通道冻结施工冻结技术效果,以郑州市8号线1期工程3号联络通道人工冻结施工为背景,探究了拱顶冻结管不同排布情况下冻结效果,采用ABAQUS建立三维实体数值模型计算土体温度场,并提取冻结壁发展情况与冻土平均温度。结果表明:传统双排冻结管在长距离联络通道冻结施工中可能存在冻土平均温度不足的情况;增设为三排冻结管可以有效增强喇叭口拱顶冻结壁,降低侧墙冻结壁平均温度;建议在三排冻结管布置情况可将积极冻结时间降至47 d。
为探究盾构隧道长联络通道冻结施工冻结技术效果,以郑州市8号线1期工程3号联络通道人工冻结施工为背景,探究了拱顶冻结管不同排布情况下冻结效果,采用ABAQUS建立三维实体数值模型计算土体温度场,并提取冻结壁发展情况与冻土平均温度。结果表明:传统双排冻结管在长距离联络通道冻结施工中可能存在冻土平均温度不足的情况;增设为三排冻结管可以有效增强喇叭口拱顶冻结壁,降低侧墙冻结壁平均温度;建议在三排冻结管布置情况可将积极冻结时间降至47 d。
为探究盾构隧道长联络通道冻结施工冻结技术效果,以郑州市8号线1期工程3号联络通道人工冻结施工为背景,探究了拱顶冻结管不同排布情况下冻结效果,采用ABAQUS建立三维实体数值模型计算土体温度场,并提取冻结壁发展情况与冻土平均温度。结果表明:传统双排冻结管在长距离联络通道冻结施工中可能存在冻土平均温度不足的情况;增设为三排冻结管可以有效增强喇叭口拱顶冻结壁,降低侧墙冻结壁平均温度;建议在三排冻结管布置情况可将积极冻结时间降至47 d。
为探究盾构隧道长联络通道冻结施工冻结技术效果,以郑州市8号线1期工程3号联络通道人工冻结施工为背景,探究了拱顶冻结管不同排布情况下冻结效果,采用ABAQUS建立三维实体数值模型计算土体温度场,并提取冻结壁发展情况与冻土平均温度。结果表明:传统双排冻结管在长距离联络通道冻结施工中可能存在冻土平均温度不足的情况;增设为三排冻结管可以有效增强喇叭口拱顶冻结壁,降低侧墙冻结壁平均温度;建议在三排冻结管布置情况可将积极冻结时间降至47 d。
为探究盾构隧道长联络通道冻结施工冻结技术效果,以郑州市8号线1期工程3号联络通道人工冻结施工为背景,探究了拱顶冻结管不同排布情况下冻结效果,采用ABAQUS建立三维实体数值模型计算土体温度场,并提取冻结壁发展情况与冻土平均温度。结果表明:传统双排冻结管在长距离联络通道冻结施工中可能存在冻土平均温度不足的情况;增设为三排冻结管可以有效增强喇叭口拱顶冻结壁,降低侧墙冻结壁平均温度;建议在三排冻结管布置情况可将积极冻结时间降至47 d。
为探究盾构隧道长联络通道冻结施工冻结技术效果,以郑州市8号线1期工程3号联络通道人工冻结施工为背景,探究了拱顶冻结管不同排布情况下冻结效果,采用ABAQUS建立三维实体数值模型计算土体温度场,并提取冻结壁发展情况与冻土平均温度。结果表明:传统双排冻结管在长距离联络通道冻结施工中可能存在冻土平均温度不足的情况;增设为三排冻结管可以有效增强喇叭口拱顶冻结壁,降低侧墙冻结壁平均温度;建议在三排冻结管布置情况可将积极冻结时间降至47 d。
新型管幕冻结法冻结系统由充填混凝土的实顶管内布置圆形主力冻结管和限位管、未充填混凝土的空顶管内布置异形加强冻结管组成。为分析该新型管幕冻结系统中空顶管周围的冻结效果,通过拱北隧道管幕冻结现场原型试验,对空顶管中异形加强冻结管是否采取外表面保温措施展开研究,利用冻土帷幕厚度的变化对异形加强冻结管保温措施与不保温状态进行冻结效果对比分析。结果表明:异形加强冻结管保温不利于冻土帷幕的形成,随着冻结时间推移,冻土帷幕的发展会越来越慢;协同冻结模式下60 d后保温与不保温的冻土厚度之差约为冻结20 d的2倍。可以把空顶管作为“大冻结管”来考虑,利用异形加强冻结管对空顶管内部整体降温,更有利于顶管周围冻土帷幕的发展。
新型管幕冻结法冻结系统由充填混凝土的实顶管内布置圆形主力冻结管和限位管、未充填混凝土的空顶管内布置异形加强冻结管组成。为分析该新型管幕冻结系统中空顶管周围的冻结效果,通过拱北隧道管幕冻结现场原型试验,对空顶管中异形加强冻结管是否采取外表面保温措施展开研究,利用冻土帷幕厚度的变化对异形加强冻结管保温措施与不保温状态进行冻结效果对比分析。结果表明:异形加强冻结管保温不利于冻土帷幕的形成,随着冻结时间推移,冻土帷幕的发展会越来越慢;协同冻结模式下60 d后保温与不保温的冻土厚度之差约为冻结20 d的2倍。可以把空顶管作为“大冻结管”来考虑,利用异形加强冻结管对空顶管内部整体降温,更有利于顶管周围冻土帷幕的发展。
新型管幕冻结法冻结系统由充填混凝土的实顶管内布置圆形主力冻结管和限位管、未充填混凝土的空顶管内布置异形加强冻结管组成。为分析该新型管幕冻结系统中空顶管周围的冻结效果,通过拱北隧道管幕冻结现场原型试验,对空顶管中异形加强冻结管是否采取外表面保温措施展开研究,利用冻土帷幕厚度的变化对异形加强冻结管保温措施与不保温状态进行冻结效果对比分析。结果表明:异形加强冻结管保温不利于冻土帷幕的形成,随着冻结时间推移,冻土帷幕的发展会越来越慢;协同冻结模式下60 d后保温与不保温的冻土厚度之差约为冻结20 d的2倍。可以把空顶管作为“大冻结管”来考虑,利用异形加强冻结管对空顶管内部整体降温,更有利于顶管周围冻土帷幕的发展。
盾构对接施工冻结法加固,确立最佳的冻结方案、掌握冻土的帷幕情况及工程中温度场的发展规律等是需要迫切解决的关键问题。本研究运用有限元软件对盾构隧道对接半圆环形冻结加固结构进行温度场发展规律分析,将数值计算结果与圆形刀盘冻结加固结构进行对比,通过改变冻结管数量(圆心角度数)来优化冻结设计,对比确定最优冻结方案。结果表明:在冻结9 d时,-1℃等温线开始交圈,在冻结15 d时,-1℃等温线基本完成交圈并形成圆环形的冻土帷幕,在冻结40 d时,冻土帷幕厚度达到2.3 m;在冻结13 d时,-10℃等温线开始交圈,在冻结28 d时,-10℃等温线基本完成交圈并形成圆环形的冻土帷幕,在冻结40 d时,冻土帷幕厚度达到1.2 m。从最终冻结效果以及温度随时间变化历程可以看出,离冻结管越近,受盐水降温影响越大,冻结效果越好;采用半圆环形冻结加固效果优于圆形刀盘冻结加固;原方案偏于保守,可适当减少冻结管数量(增加圆心角度数),优化分析出最优冻结方案,建议今后类似工程设计采用方案1,即圆心角8°或45根冻结管。