寒冷地区高速路基冻胀是高速铁路路基工程设计及建造过程中面临的难题,依托东北地区某高速铁路,旨在从设计、施工、运营全阶段研究控制路基冻害的主要技术措施,为季节性冻土地区高速铁路路基建设及运营维护提供参考。研究表明,设计阶段应根据引起路基冻胀的填料、水分、气温等主要因素,采取换填防冻胀填料、混凝土基床、路基保温、路基面封闭及防排水等措施,从设计源头进行控制;建设过程中应根据冻胀监测情况,采取增设渗水盲沟、挖除换填等措施进行过程冻胀整治;运营阶段应对个别冻害严重地段采取疏干排水孔、微型盾构置换等处理措施。分析表明,建设期间由于路基尚未成形、表层尚未封闭、局部排水不畅等原因,监测冻胀量普遍较大,随着路基的成形及对冻胀严重段落采取相应整治措施后,建设期间路基冻胀范围在0~4 mm测点占比逐年提升,而>4 mm测点占比逐年下降,运营期间全线路基冻胀维持在较低水平。结果表明,严寒和寒冷地区路基冻胀问题难以完全避免,但通过全过程冻胀控制能够将冻胀量维持在较低水平,且能够满足高速铁路运营安全。
寒冷地区高速路基冻胀是高速铁路路基工程设计及建造过程中面临的难题,依托东北地区某高速铁路,旨在从设计、施工、运营全阶段研究控制路基冻害的主要技术措施,为季节性冻土地区高速铁路路基建设及运营维护提供参考。研究表明,设计阶段应根据引起路基冻胀的填料、水分、气温等主要因素,采取换填防冻胀填料、混凝土基床、路基保温、路基面封闭及防排水等措施,从设计源头进行控制;建设过程中应根据冻胀监测情况,采取增设渗水盲沟、挖除换填等措施进行过程冻胀整治;运营阶段应对个别冻害严重地段采取疏干排水孔、微型盾构置换等处理措施。分析表明,建设期间由于路基尚未成形、表层尚未封闭、局部排水不畅等原因,监测冻胀量普遍较大,随着路基的成形及对冻胀严重段落采取相应整治措施后,建设期间路基冻胀范围在0~4 mm测点占比逐年提升,而>4 mm测点占比逐年下降,运营期间全线路基冻胀维持在较低水平。结果表明,严寒和寒冷地区路基冻胀问题难以完全避免,但通过全过程冻胀控制能够将冻胀量维持在较低水平,且能够满足高速铁路运营安全。
寒冷地区高速路基冻胀是高速铁路路基工程设计及建造过程中面临的难题,依托东北地区某高速铁路,旨在从设计、施工、运营全阶段研究控制路基冻害的主要技术措施,为季节性冻土地区高速铁路路基建设及运营维护提供参考。研究表明,设计阶段应根据引起路基冻胀的填料、水分、气温等主要因素,采取换填防冻胀填料、混凝土基床、路基保温、路基面封闭及防排水等措施,从设计源头进行控制;建设过程中应根据冻胀监测情况,采取增设渗水盲沟、挖除换填等措施进行过程冻胀整治;运营阶段应对个别冻害严重地段采取疏干排水孔、微型盾构置换等处理措施。分析表明,建设期间由于路基尚未成形、表层尚未封闭、局部排水不畅等原因,监测冻胀量普遍较大,随着路基的成形及对冻胀严重段落采取相应整治措施后,建设期间路基冻胀范围在0~4 mm测点占比逐年提升,而>4 mm测点占比逐年下降,运营期间全线路基冻胀维持在较低水平。结果表明,严寒和寒冷地区路基冻胀问题难以完全避免,但通过全过程冻胀控制能够将冻胀量维持在较低水平,且能够满足高速铁路运营安全。
针对寒区铁路路基冻胀整治难题,以我国一寒区铁路路桥过渡段冻害整治工点为依托,介绍了一种可在运营条件下实施的路基微型盾构置换方法。基于数值计算软件建立了环境-路基-盾构置换层-地基的多层结构水热力耦合模型,采用数值计算方法分析路基内部水分场、温度场、冻胀变形场的影响机理及演化规律,验证了盾构置换层所起冷屏障层、水分阻滞层、零冻胀填料夹层等预期效应。综合现场测试和计算结果分析,论证了微型盾构置换方法用于路基冻害整治的有效性与实用性。
针对寒区铁路路基冻胀整治难题,以我国一寒区铁路路桥过渡段冻害整治工点为依托,介绍了一种可在运营条件下实施的路基微型盾构置换方法。基于数值计算软件建立了环境-路基-盾构置换层-地基的多层结构水热力耦合模型,采用数值计算方法分析路基内部水分场、温度场、冻胀变形场的影响机理及演化规律,验证了盾构置换层所起冷屏障层、水分阻滞层、零冻胀填料夹层等预期效应。综合现场测试和计算结果分析,论证了微型盾构置换方法用于路基冻害整治的有效性与实用性。