灌区渠道冻胀破坏是季节性冻土地区常见的工程地质问题,分析研究影响渠道冻胀破坏的各种因素,能够确定合理有效的防治措施。以景电灌区和靖会灌区为研究对象,采用现场勘察与室内试验相结合的方法,分析研究了影响渠道冻胀破坏的各种因素,划分了渠道冻胀等级,阐明了渠道在运行过程中的冻胀变化特征。结果表明:(1)渠道冻胀受多种因素影响,主要包括地基土类别、地下水埋深、冻前含水率及渠基土层毛细水上升高度;(2)灌区渠道地基岩性主要为粉质黏土、粉质壤土、马兰黄土、砂壤土、粉细砂及碎石土,地基土的冻胀量大小关系为:粉质黏土>马兰黄土和粉质壤土>砂壤土>粉细砂>碎石土;(3)随着渠道地基土含水率的增大,显著加剧了灌区渠道冻胀破坏过程;(4)梯形和弧形渠道大部分有轻微-中等冻胀,浆砌石矩形渠道局部存在冻胀坡坏,U形渠道基本无冻胀坡坏;(5)在灌区渠道改造设计时,应该充分考虑水文地质条件、地基土类别、冻土深度等因素的影响,通过综合分析确定渠道断面的结构形式;(6)渠道冻胀破坏防治措施主要包括优化渠道断面结构、改进地基处理方法以及采用新型衬护结构形式。
灌区渠道冻胀破坏是季节性冻土地区常见的工程地质问题,分析研究影响渠道冻胀破坏的各种因素,能够确定合理有效的防治措施。以景电灌区和靖会灌区为研究对象,采用现场勘察与室内试验相结合的方法,分析研究了影响渠道冻胀破坏的各种因素,划分了渠道冻胀等级,阐明了渠道在运行过程中的冻胀变化特征。结果表明:(1)渠道冻胀受多种因素影响,主要包括地基土类别、地下水埋深、冻前含水率及渠基土层毛细水上升高度;(2)灌区渠道地基岩性主要为粉质黏土、粉质壤土、马兰黄土、砂壤土、粉细砂及碎石土,地基土的冻胀量大小关系为:粉质黏土>马兰黄土和粉质壤土>砂壤土>粉细砂>碎石土;(3)随着渠道地基土含水率的增大,显著加剧了灌区渠道冻胀破坏过程;(4)梯形和弧形渠道大部分有轻微-中等冻胀,浆砌石矩形渠道局部存在冻胀坡坏,U形渠道基本无冻胀坡坏;(5)在灌区渠道改造设计时,应该充分考虑水文地质条件、地基土类别、冻土深度等因素的影响,通过综合分析确定渠道断面的结构形式;(6)渠道冻胀破坏防治措施主要包括优化渠道断面结构、改进地基处理方法以及采用新型衬护结构形式。
灌区渠道冻胀破坏是季节性冻土地区常见的工程地质问题,分析研究影响渠道冻胀破坏的各种因素,能够确定合理有效的防治措施。以景电灌区和靖会灌区为研究对象,采用现场勘察与室内试验相结合的方法,分析研究了影响渠道冻胀破坏的各种因素,划分了渠道冻胀等级,阐明了渠道在运行过程中的冻胀变化特征。结果表明:(1)渠道冻胀受多种因素影响,主要包括地基土类别、地下水埋深、冻前含水率及渠基土层毛细水上升高度;(2)灌区渠道地基岩性主要为粉质黏土、粉质壤土、马兰黄土、砂壤土、粉细砂及碎石土,地基土的冻胀量大小关系为:粉质黏土>马兰黄土和粉质壤土>砂壤土>粉细砂>碎石土;(3)随着渠道地基土含水率的增大,显著加剧了灌区渠道冻胀破坏过程;(4)梯形和弧形渠道大部分有轻微-中等冻胀,浆砌石矩形渠道局部存在冻胀坡坏,U形渠道基本无冻胀坡坏;(5)在灌区渠道改造设计时,应该充分考虑水文地质条件、地基土类别、冻土深度等因素的影响,通过综合分析确定渠道断面的结构形式;(6)渠道冻胀破坏防治措施主要包括优化渠道断面结构、改进地基处理方法以及采用新型衬护结构形式。
炭质板岩是一种力学性质明显呈横观各向同性的岩体,其岩层倾角对力学性质具有重要影响。为研究高海拔寒区炭质板岩隧道围岩冻胀特性及冻胀力分布特征,依托G219线新藏公路黑恰隧道工程,采用不同层理倾角饱和炭质板岩单向冻结试验、不均匀冻胀力理论模型和围岩–结构冻胀特性原位测试等手段,探究炭质板岩的不均匀冻胀特性、隧道温度场和围岩冻胀力分布特征。研究表明:(1)单向冻结状态下,板岩不均匀冻胀系数随温度梯度的增大逐渐增大,层理结构对板岩不均匀冻胀性具有较强的调控作用,冻结方向与层理倾角越大,板岩的不均匀冻胀系数越大,不均匀冻胀性越强;(2)黑恰隧道施工期洞口段围岩冻融圈包络图呈现梨形,在拱脚处温度最低、冻结深度最大,最大冻深为2.97 m;(3)围岩–结构实测冻胀力在0.08~0.63 MPa范围,其中左拱脚处最大,左拱肩处最小;(4)在不均匀冻胀系数考虑冻结方向与板岩层理倾角关系的条件下,寒区隧道不均匀冻胀力理论计算值与实测值吻合较好,表征了横观各向同性围岩的不均匀冻胀特征,可为寒区横观各向同性围岩隧道冻害高风险部位防冻设计提供参考。
炭质板岩是一种力学性质明显呈横观各向同性的岩体,其岩层倾角对力学性质具有重要影响。为研究高海拔寒区炭质板岩隧道围岩冻胀特性及冻胀力分布特征,依托G219线新藏公路黑恰隧道工程,采用不同层理倾角饱和炭质板岩单向冻结试验、不均匀冻胀力理论模型和围岩–结构冻胀特性原位测试等手段,探究炭质板岩的不均匀冻胀特性、隧道温度场和围岩冻胀力分布特征。研究表明:(1)单向冻结状态下,板岩不均匀冻胀系数随温度梯度的增大逐渐增大,层理结构对板岩不均匀冻胀性具有较强的调控作用,冻结方向与层理倾角越大,板岩的不均匀冻胀系数越大,不均匀冻胀性越强;(2)黑恰隧道施工期洞口段围岩冻融圈包络图呈现梨形,在拱脚处温度最低、冻结深度最大,最大冻深为2.97 m;(3)围岩–结构实测冻胀力在0.08~0.63 MPa范围,其中左拱脚处最大,左拱肩处最小;(4)在不均匀冻胀系数考虑冻结方向与板岩层理倾角关系的条件下,寒区隧道不均匀冻胀力理论计算值与实测值吻合较好,表征了横观各向同性围岩的不均匀冻胀特征,可为寒区横观各向同性围岩隧道冻害高风险部位防冻设计提供参考。
炭质板岩是一种力学性质明显呈横观各向同性的岩体,其岩层倾角对力学性质具有重要影响。为研究高海拔寒区炭质板岩隧道围岩冻胀特性及冻胀力分布特征,依托G219线新藏公路黑恰隧道工程,采用不同层理倾角饱和炭质板岩单向冻结试验、不均匀冻胀力理论模型和围岩–结构冻胀特性原位测试等手段,探究炭质板岩的不均匀冻胀特性、隧道温度场和围岩冻胀力分布特征。研究表明:(1)单向冻结状态下,板岩不均匀冻胀系数随温度梯度的增大逐渐增大,层理结构对板岩不均匀冻胀性具有较强的调控作用,冻结方向与层理倾角越大,板岩的不均匀冻胀系数越大,不均匀冻胀性越强;(2)黑恰隧道施工期洞口段围岩冻融圈包络图呈现梨形,在拱脚处温度最低、冻结深度最大,最大冻深为2.97 m;(3)围岩–结构实测冻胀力在0.08~0.63 MPa范围,其中左拱脚处最大,左拱肩处最小;(4)在不均匀冻胀系数考虑冻结方向与板岩层理倾角关系的条件下,寒区隧道不均匀冻胀力理论计算值与实测值吻合较好,表征了横观各向同性围岩的不均匀冻胀特征,可为寒区横观各向同性围岩隧道冻害高风险部位防冻设计提供参考。
某高速铁路沿线季节性冻土大面积分布,本文依据地形地貌、土性成分及水文地质条件等特征,选定14处天然场地。通过冻融周期的监测,得到沿线地基土的冻结融化速率、最大季节冻深及地表变形量等重要数据。通过分析积雪场地及裸露场地的冻结融化过程与地表变形情况,结合气温、降水量、地表雪盖等因素,分析了高速铁路沿线季节性冻土的冻融特性。研究结果表明:(1)沿线有雪条件下天然场地最大冻结深度19~90 cm,平均值为45 cm;(2)沿线季节冻土冻结速率0.27~1.20 cm/d,融化速率普遍大于冻结速率,为0.28~1.92 cm/d;(3)积雪对保持土体温度、抑制土体冻结具有良好效果,能有效缩短冻结、融化时间,使最大冻结深度减小18%~24%;(4)冻胀量呈由西向东增大趋势,其变化规律和气候条件吻合。研究成果可为类似季节性冻土地区高速铁路设计及冻害防治提供借鉴。
某高速铁路沿线季节性冻土大面积分布,本文依据地形地貌、土性成分及水文地质条件等特征,选定14处天然场地。通过冻融周期的监测,得到沿线地基土的冻结融化速率、最大季节冻深及地表变形量等重要数据。通过分析积雪场地及裸露场地的冻结融化过程与地表变形情况,结合气温、降水量、地表雪盖等因素,分析了高速铁路沿线季节性冻土的冻融特性。研究结果表明:(1)沿线有雪条件下天然场地最大冻结深度19~90 cm,平均值为45 cm;(2)沿线季节冻土冻结速率0.27~1.20 cm/d,融化速率普遍大于冻结速率,为0.28~1.92 cm/d;(3)积雪对保持土体温度、抑制土体冻结具有良好效果,能有效缩短冻结、融化时间,使最大冻结深度减小18%~24%;(4)冻胀量呈由西向东增大趋势,其变化规律和气候条件吻合。研究成果可为类似季节性冻土地区高速铁路设计及冻害防治提供借鉴。
为解决寒区衬砌冻胀问题,依托新疆某水电站引水隧洞工程,建立冻结圈整体冻胀模型,分析衬砌冻结深度和冻胀应力的变化规律。结果表明:在长时间的低温环境下,孔隙水会在冻结过程中发生相变,导致围岩的冻结区域扩大,从而使冻结深度增加。在冻结作用影响下,围岩的位移发生了显著的增大,尤其是在拱腰和拱顶部位,位移幅度更为显著。其中水平位移增大了12.38倍,竖向位移增大了10.8倍,拱顶处的竖向位移增大了5.94倍,拱底处的竖向位移增大了2.11倍。隧洞断面围岩的最大和最小主应力均呈现出空间分布特征,隧洞围岩的应力分布发生了显著变化,拱底区域的应力变化也相对较大,而拱腰区域经历了最大的应力波动。同时结合相关工程经验,提出寒区引水隧洞衬砌冻胀特性冻胀防治措施,能够为寒区引水隧洞的建设和运营提供更加可靠的保障。
为解决寒区衬砌冻胀问题,依托新疆某水电站引水隧洞工程,建立冻结圈整体冻胀模型,分析衬砌冻结深度和冻胀应力的变化规律。结果表明:在长时间的低温环境下,孔隙水会在冻结过程中发生相变,导致围岩的冻结区域扩大,从而使冻结深度增加。在冻结作用影响下,围岩的位移发生了显著的增大,尤其是在拱腰和拱顶部位,位移幅度更为显著。其中水平位移增大了12.38倍,竖向位移增大了10.8倍,拱顶处的竖向位移增大了5.94倍,拱底处的竖向位移增大了2.11倍。隧洞断面围岩的最大和最小主应力均呈现出空间分布特征,隧洞围岩的应力分布发生了显著变化,拱底区域的应力变化也相对较大,而拱腰区域经历了最大的应力波动。同时结合相关工程经验,提出寒区引水隧洞衬砌冻胀特性冻胀防治措施,能够为寒区引水隧洞的建设和运营提供更加可靠的保障。