本文以昭苏县夏塔乡优质饲草料基地建设项目为例,从渠道抗冻胀分析、抗冻胀设计、抗冻胀措施等方面对冻土区防渗衬砌渠道冻胀破坏问题进行探析,得出冻土区防渗衬砌渠道抗冻胀设计要点,为冻土区水利基础设施建设提供参考。
本文以昭苏县夏塔乡优质饲草料基地建设项目为例,从渠道抗冻胀分析、抗冻胀设计、抗冻胀措施等方面对冻土区防渗衬砌渠道冻胀破坏问题进行探析,得出冻土区防渗衬砌渠道抗冻胀设计要点,为冻土区水利基础设施建设提供参考。
本文以昭苏县夏塔乡优质饲草料基地建设项目为例,从渠道抗冻胀分析、抗冻胀设计、抗冻胀措施等方面对冻土区防渗衬砌渠道冻胀破坏问题进行探析,得出冻土区防渗衬砌渠道抗冻胀设计要点,为冻土区水利基础设施建设提供参考。
随着寒区工程向更高海拔、高纬度扩展,裂隙岩体在低温环境下的力学响应问题日益凸显。现有冻土力学理论难以有效指导寒区岩体工程实践,亟需深化对裂隙岩体冻胀机制的认识。通过理论研究、室内与现场试验、数值模拟等方法,系统探究低温及冻融循环作用下裂隙岩体冻胀力的形成机制与破坏规律。研究表明:裂隙岩体冻胀机制包括体积膨胀、分凝冰以及混合冻胀理论,其中,半椭圆形开放裂隙混合冻胀模型在描述裂隙岩体冻胀机制方面更为合理。裂隙岩体冻胀是一个考虑水分迁移、多相介质热传导、裂纹扩展的温度–渗流–应力耦合问题,裂隙结构、饱和度、水分迁移、密闭性、冻结模式、冰–岩界面作用、水–冰相变等对裂隙岩体冻胀力演化及损伤具有重要影响。冻胀力驱动裂隙扩展是裂隙岩体损伤的主要方式,受裂隙和岩体特征显著影响。此外,室内和现场试验的冻胀行为存在差异,特别是在冻融循环、开裂温度和补水条件方面。未来应从微、细观机制入手,辅助室内与现场试验,探究水分迁移和冰岩作用机制,以求解冻胀力为初步目标,结合数值计算方法,探究裂隙网络演化,并结合人工智能与大数据分析,尝试建立裂隙岩体冻胀破坏预测的自适应监测与决策支持系统。
随着寒区工程向更高海拔、高纬度扩展,裂隙岩体在低温环境下的力学响应问题日益凸显。现有冻土力学理论难以有效指导寒区岩体工程实践,亟需深化对裂隙岩体冻胀机制的认识。通过理论研究、室内与现场试验、数值模拟等方法,系统探究低温及冻融循环作用下裂隙岩体冻胀力的形成机制与破坏规律。研究表明:裂隙岩体冻胀机制包括体积膨胀、分凝冰以及混合冻胀理论,其中,半椭圆形开放裂隙混合冻胀模型在描述裂隙岩体冻胀机制方面更为合理。裂隙岩体冻胀是一个考虑水分迁移、多相介质热传导、裂纹扩展的温度–渗流–应力耦合问题,裂隙结构、饱和度、水分迁移、密闭性、冻结模式、冰–岩界面作用、水–冰相变等对裂隙岩体冻胀力演化及损伤具有重要影响。冻胀力驱动裂隙扩展是裂隙岩体损伤的主要方式,受裂隙和岩体特征显著影响。此外,室内和现场试验的冻胀行为存在差异,特别是在冻融循环、开裂温度和补水条件方面。未来应从微、细观机制入手,辅助室内与现场试验,探究水分迁移和冰岩作用机制,以求解冻胀力为初步目标,结合数值计算方法,探究裂隙网络演化,并结合人工智能与大数据分析,尝试建立裂隙岩体冻胀破坏预测的自适应监测与决策支持系统。
随着寒区工程向更高海拔、高纬度扩展,裂隙岩体在低温环境下的力学响应问题日益凸显。现有冻土力学理论难以有效指导寒区岩体工程实践,亟需深化对裂隙岩体冻胀机制的认识。通过理论研究、室内与现场试验、数值模拟等方法,系统探究低温及冻融循环作用下裂隙岩体冻胀力的形成机制与破坏规律。研究表明:裂隙岩体冻胀机制包括体积膨胀、分凝冰以及混合冻胀理论,其中,半椭圆形开放裂隙混合冻胀模型在描述裂隙岩体冻胀机制方面更为合理。裂隙岩体冻胀是一个考虑水分迁移、多相介质热传导、裂纹扩展的温度–渗流–应力耦合问题,裂隙结构、饱和度、水分迁移、密闭性、冻结模式、冰–岩界面作用、水–冰相变等对裂隙岩体冻胀力演化及损伤具有重要影响。冻胀力驱动裂隙扩展是裂隙岩体损伤的主要方式,受裂隙和岩体特征显著影响。此外,室内和现场试验的冻胀行为存在差异,特别是在冻融循环、开裂温度和补水条件方面。未来应从微、细观机制入手,辅助室内与现场试验,探究水分迁移和冰岩作用机制,以求解冻胀力为初步目标,结合数值计算方法,探究裂隙网络演化,并结合人工智能与大数据分析,尝试建立裂隙岩体冻胀破坏预测的自适应监测与决策支持系统。
针对寒区土石坝护坡存在的隆起、错位、坍塌等冻胀破坏问题,以寒区某土石坝护坡工程砂砾料垫层、坝体填土土石混合体为研究对象,开展了低围压下不同温度和含石量的土石坝护坡土石混合体三轴试验,研究了不同围压、温度、含石量对土石混合体力学特性的影响。结果表明:在较低围压作用下,含石量较低试样的应力-应变关系曲线为应变软化型,随着围压增大,试样的应力-应变关系曲线变为应变硬化型;在常温条件下,当围压较低时,不同含石量的试样呈现先剪缩后剪胀的现象,当围压较高时,试样则一直表现为剪缩,且围压越大,剪缩量越大;在不同冻结温度下,土石混合体的体积应变呈现先剪缩后剪胀的变化规律,且试验温度越低,剪胀变形越明显;随着含石量的增加,砾石之间的嵌合作用增强,土石混合体逐渐成为砾石骨架结构,土石混合体的内摩擦角增大而黏聚力减小;温度的降低使得土石混合体试样内部的水逐渐相变成冰,在结冰胶结作用下,土石混合体的内摩擦角和黏聚力都有所增加。
针对寒区土石坝护坡存在的隆起、错位、坍塌等冻胀破坏问题,以寒区某土石坝护坡工程砂砾料垫层、坝体填土土石混合体为研究对象,开展了低围压下不同温度和含石量的土石坝护坡土石混合体三轴试验,研究了不同围压、温度、含石量对土石混合体力学特性的影响。结果表明:在较低围压作用下,含石量较低试样的应力-应变关系曲线为应变软化型,随着围压增大,试样的应力-应变关系曲线变为应变硬化型;在常温条件下,当围压较低时,不同含石量的试样呈现先剪缩后剪胀的现象,当围压较高时,试样则一直表现为剪缩,且围压越大,剪缩量越大;在不同冻结温度下,土石混合体的体积应变呈现先剪缩后剪胀的变化规律,且试验温度越低,剪胀变形越明显;随着含石量的增加,砾石之间的嵌合作用增强,土石混合体逐渐成为砾石骨架结构,土石混合体的内摩擦角增大而黏聚力减小;温度的降低使得土石混合体试样内部的水逐渐相变成冰,在结冰胶结作用下,土石混合体的内摩擦角和黏聚力都有所增加。
地下水浅埋或窄深式衬砌渠道,渠顶竖向冻胀对渠道低温稳定性影响较大,容易产生衬砌断裂、整体上抬冻害,而现有渠道冻胀工程力学模型仅分析渠坡法向冻胀。该研究考虑了渠顶竖向冻胀引起的冻拔与渠坡法向冻胀共同作用,建立了考虑冻拔的渠道冻胀工程力学模型。以冻胀敏感土质为例,应用渠道水–热–力三场耦合数值模拟,研究不同渠坡倾角、不同宽深比、不同地下水位条件下冻胀情况,以探明渠道衬砌冻拔机理,明确冻拔产生时竖向与法向冻胀分布规律。提出了冻拔破坏发生的临界坡长、临界地下水位、冻拔危险位置计算方法,同时给出了冻拔状态下渠道衬砌板内力、渠坡抗冻拔强度等计算方法。结果表明:衬砌冻拔最大拉应力与冻深和渠坡倾角正相关,与地下水位负相关。经数值模型验证,最大拉应力误差为1.5%,冻拔位置误差在16.01%以内。宁夏灌区土质条件下,冻结线半径函数斜率范围为1.047~4.040。模型解释了小型渠道易整体冻拔上抬及宽浅式渠道抗冻拔优越的原因,可以对渠道衬砌抗冻胀结构进行定量分析,为工程设计、规范修订提供参考。
梯形混凝土衬砌渠道在季节性冻土地区均会不同程度发生冻胀破坏。文章针对内蒙古河套灌区典型渠道冻胀受力情况进行分析,通过力学方法对冻胀破坏进行判断,为中国北方季节性冻土地区冻胀研究提供技术依据。