为了提升季节性冻土区水文过程模拟精度,本研究耦合了WEP分布式架构与SHAW水热耦合机理,构建了WEP-SFZ水文模型。通过建立分层融合接口,在平面结构上保留WEP高程带计算单元并引入Campbell方程求解水热动态,在垂向结构上融合SHAW七层网格细化冻融相变过程,同时采用渐进式参数识别方法,实现了冻土活动层与产流机理的双向耦合。本研究以西流松花江流域为研究对象,结果表明:(1)土壤温度模拟Nash-Sutcliffe(NSE)效率系数达0.80~0.96,土壤含水量模拟均方根误差(RMSE)在0.03~0.10 m3/m3之间,径流模拟精度较原WEP模型显著提升。(2)1980—2020年间流域径流来源以降水为主。本研究成果可为寒区水资源调控和洪旱灾害防御提供理论支撑。
为了提升季节性冻土区水文过程模拟精度,本研究耦合了WEP分布式架构与SHAW水热耦合机理,构建了WEP-SFZ水文模型。通过建立分层融合接口,在平面结构上保留WEP高程带计算单元并引入Campbell方程求解水热动态,在垂向结构上融合SHAW七层网格细化冻融相变过程,同时采用渐进式参数识别方法,实现了冻土活动层与产流机理的双向耦合。本研究以西流松花江流域为研究对象,结果表明:(1)土壤温度模拟Nash-Sutcliffe(NSE)效率系数达0.80~0.96,土壤含水量模拟均方根误差(RMSE)在0.03~0.10 m3/m3之间,径流模拟精度较原WEP模型显著提升。(2)1980—2020年间流域径流来源以降水为主。本研究成果可为寒区水资源调控和洪旱灾害防御提供理论支撑。
为了提升季节性冻土区水文过程模拟精度,本研究耦合了WEP分布式架构与SHAW水热耦合机理,构建了WEP-SFZ水文模型。通过建立分层融合接口,在平面结构上保留WEP高程带计算单元并引入Campbell方程求解水热动态,在垂向结构上融合SHAW七层网格细化冻融相变过程,同时采用渐进式参数识别方法,实现了冻土活动层与产流机理的双向耦合。本研究以西流松花江流域为研究对象,结果表明:(1)土壤温度模拟Nash-Sutcliffe(NSE)效率系数达0.80~0.96,土壤含水量模拟均方根误差(RMSE)在0.03~0.10 m3/m3之间,径流模拟精度较原WEP模型显著提升。(2)1980—2020年间流域径流来源以降水为主。本研究成果可为寒区水资源调控和洪旱灾害防御提供理论支撑。
雅鲁藏布江流域蕴藏着丰富的水资源,在气候变化背景下,近年来其上游(奴下水文站以上流域)的径流发生了显著变化。本文基于耦合冰冻圈过程的生态水文模型GBEHM,构建了雅鲁藏布江上游的分布式水文模型,对其水文过程进行模拟,计算得到上游水文要素的变化过程,并定量分析了气候变化对径流的影响。结果显示,1981—2010年雅江上游的年径流量和蒸散发量均呈显著增加趋势,降水增加是径流增加的主要因素;冰川和冻土发生显著退化,多年冻土面积占上游面积的比例减少约7%,多年冻土活动层厚度增加速率约30.6 cm/10a,季节性冻土的年最大冻结深度减少速率约7.3 cm/10a;流域冰储量以10亿m3/a的速率显著下降,而冰川融化径流以2.7 mm/a的速率增加。
雅鲁藏布江流域蕴藏着丰富的水资源,在气候变化背景下,近年来其上游(奴下水文站以上流域)的径流发生了显著变化。本文基于耦合冰冻圈过程的生态水文模型GBEHM,构建了雅鲁藏布江上游的分布式水文模型,对其水文过程进行模拟,计算得到上游水文要素的变化过程,并定量分析了气候变化对径流的影响。结果显示,1981—2010年雅江上游的年径流量和蒸散发量均呈显著增加趋势,降水增加是径流增加的主要因素;冰川和冻土发生显著退化,多年冻土面积占上游面积的比例减少约7%,多年冻土活动层厚度增加速率约30.6 cm/10a,季节性冻土的年最大冻结深度减少速率约7.3 cm/10a;流域冰储量以10亿m3/a的速率显著下降,而冰川融化径流以2.7 mm/a的速率增加。
黑龙江是高纬度寒区界河,防洪问题突出,模型研究较少。本文建立黑龙江流域空间信息库,构建了基于物理机制的黑龙江流域分布式水文模型GBHM-HLJ。其中引入冻土导水率随冻融期温度指数型变化的概化模型,模拟土壤冻融循环对水分运移的影响。率定期和验证期10个主要站点日均流量模拟的Nash-Sutcliffe效率系数均在0.73以上,月均流量模拟的决定系数在0.82以上。模拟的流域平均雪水当量逐月数据与2014—2019年FY-3C卫星遥感反演数据进行对比,决定系数为0.83。干流控制站哈巴罗夫斯克站1960—1990年日均流量模拟的Nash-Sutcliffe效率系数为0.90,历年最大日均流量模拟的决定系数为0.72。黑龙江流域分布式水文模型为研究流域水文规律和干支流洪水特征提供了基础。
黑龙江是高纬度寒区界河,防洪问题突出,模型研究较少。本文建立黑龙江流域空间信息库,构建了基于物理机制的黑龙江流域分布式水文模型GBHM-HLJ。其中引入冻土导水率随冻融期温度指数型变化的概化模型,模拟土壤冻融循环对水分运移的影响。率定期和验证期10个主要站点日均流量模拟的Nash-Sutcliffe效率系数均在0.73以上,月均流量模拟的决定系数在0.82以上。模拟的流域平均雪水当量逐月数据与2014—2019年FY-3C卫星遥感反演数据进行对比,决定系数为0.83。干流控制站哈巴罗夫斯克站1960—1990年日均流量模拟的Nash-Sutcliffe效率系数为0.90,历年最大日均流量模拟的决定系数为0.72。黑龙江流域分布式水文模型为研究流域水文规律和干支流洪水特征提供了基础。
冻土对寒区水文过程具有重要的调节作用,是寒区水循环研究的核心内容之一.在分布式水文模型中对土壤冻融过程进行显式表达,对探索寒区水循环的机理、定量研究寒区流域径流的时空变化十分重要.先在黑河上游八宝河流域对考虑了土壤冻融过程的分布式水文模型进行简单验证,然后分析土壤冻融对流域水文过程的影响.对考虑和不考虑土壤冻融的模型模拟结果进行对比,发现冻土对流域的产流方式和速度有很大的影响,主要表现为:1)考虑冻土时,流域产流以壤中流为主,径流对降雨或融雪的响应速度较快,径流过程线变化较为剧烈,径流系数较高.冻土有效地阻碍了入渗过程,促进地表径流和壤中流的形成.壤中流发生的平均土壤深度冬季深,春季浅,年平均深度约为1.1 m;2)在不考虑冻土时,土壤下渗能力强,地下水补给是考虑冻土时的3倍,流域产流方式以基流为主,径流对降雨或融雪的响应速度减缓,径流过程线较为平滑,夏季洪峰在时间上存在明显的延迟.即便在降水强度较大的夏天,流域内都不会产生地表产流,而且壤中流产流的平均土壤深度平稳地处于2.4 m左右.研究对从机理上认识土壤冻融对水文过程的影响有一定的帮助.
如何考虑流域内部基本单元径流过程的空间变异性是分布式水文模拟待解决的问题,迄今鲜见相邻小流域径流过程空间变异性的观测及综合定量研究。通过野外试验、比较水文学和地统计学方法,依托地表过程与资源生态国家重点实验室黑龙江鹤山九三水土保持试验站建立水文过程综合观测系统,同时观测5~8个相邻小流域的降水、土壤湿度和径流等变量;引入有时滞的时间序列回归数据分析方法,量化各次自然降雨条件下其它流域和参考流域径流过程的差异性与相似性(比例系数k和拟合程度R2),也将该方法应用于土壤湿度和降水变量,分析此3水文过程的空间变异性特征;探讨这些空间特征随时间变化特性,对比降水、土壤湿度、地形等单因子空间变异性特征与径流过程空间变异性特征,建立k和降水、土壤前期含水量等的函数关系,揭示小尺度径流过程空间变异性的影响机制。研究成果有利于增加对水文响应空间过程的新理解,用于支撑分布式水文模型的开发、测试和能力提升。
2016-01山区水资源主要来自降雨、积雪、冰川融水产生的径流。无论以何种产流为主的流域,基流都是其河川径流的重要组成部分,是枯水季节径流的主要来源。开展雨-雪-冰不同产流下河川基流过程模拟研究对流域水资源管理和河流健康维护具有重要意义。不同产流下可靠的基流分割是面临的关键问题。本项研究创新地引入具有物理意义、含有较少参数、参数化简便的非线性库理论,构建基流过程模拟方程,发展不同产流下分布式水文模型中河川基流过程模拟方法;将源于降雨径流流域的数字滤波法,拓展到雪-冰产流流域,建立适用于雪-冰产流流域的数字滤波基流分割方程;利用改进的模型,在干旱-高寒山区以雪冰产流为主的玛纳斯河流域和半湿润-湿润区以降雨产流为主的沙颍河流域,检验和完善理论研究成果,研究雨-雪-冰不同产流下河川基流过程的季节、年际变化特征及控制机理,量化地下水对河川径流的贡献,揭示干旱-高寒山区和半湿润-湿润区河川基流过程特征的异同。
2016-01