为研究机器学习(Machine Learning,ML)方法在冻土力学参数预测中的性能及其应用,本文采用4种ML算法(DT、MLP、SVM以及GP),基于116组冻结黏土定向剪切试验数据,以中主应力系数b、主应力轴方向角α、平均主应力p和温度T为输入,以冻结黏土的力学参数(应力应变曲线(Stress-Strain Curve,SSC)模式和破坏强度qd)为输出,建立预测模型。通过交叉验证以及与补充试验数据的对比,评估了ML模型的预测性能。并基于最优ML模型分析在多输入参数空间下冻结黏土力学参数的分布,最后结合模型的可解释性(SHAP方法)进行参数敏感性分析。结果表明,基于ML方法可准确预测出冻结黏土的SSC模式和qd,其中MLP模型的预测表现最优;ML预测模型可以在多参数空间下模拟出冻结黏土SSC模式和qd与各输入参数之间的复杂非线性关系;通过SHAP方法有效量化了四种输入参数对于冻结黏土力学参数的影响程度:对于SSC模式的影响程度从大到小为α、p、T和b,对于qd的影响程度从大到小为T、b、α和p...
为研究机器学习(Machine Learning,ML)方法在冻土力学参数预测中的性能及其应用,本文采用4种ML算法(DT、MLP、SVM以及GP),基于116组冻结黏土定向剪切试验数据,以中主应力系数b、主应力轴方向角α、平均主应力p和温度T为输入,以冻结黏土的力学参数(应力应变曲线(Stress-Strain Curve,SSC)模式和破坏强度qd)为输出,建立预测模型。通过交叉验证以及与补充试验数据的对比,评估了ML模型的预测性能。并基于最优ML模型分析在多输入参数空间下冻结黏土力学参数的分布,最后结合模型的可解释性(SHAP方法)进行参数敏感性分析。结果表明,基于ML方法可准确预测出冻结黏土的SSC模式和qd,其中MLP模型的预测表现最优;ML预测模型可以在多参数空间下模拟出冻结黏土SSC模式和qd与各输入参数之间的复杂非线性关系;通过SHAP方法有效量化了四种输入参数对于冻结黏土力学参数的影响程度:对于SSC模式的影响程度从大到小为α、p、T和b,对于qd的影响程度从大到小为T、b、α和p...
为研究机器学习(Machine Learning,ML)方法在冻土力学参数预测中的性能及其应用,本文采用4种ML算法(DT、MLP、SVM以及GP),基于116组冻结黏土定向剪切试验数据,以中主应力系数b、主应力轴方向角α、平均主应力p和温度T为输入,以冻结黏土的力学参数(应力应变曲线(Stress-Strain Curve,SSC)模式和破坏强度qd)为输出,建立预测模型。通过交叉验证以及与补充试验数据的对比,评估了ML模型的预测性能。并基于最优ML模型分析在多输入参数空间下冻结黏土力学参数的分布,最后结合模型的可解释性(SHAP方法)进行参数敏感性分析。结果表明,基于ML方法可准确预测出冻结黏土的SSC模式和qd,其中MLP模型的预测表现最优;ML预测模型可以在多参数空间下模拟出冻结黏土SSC模式和qd与各输入参数之间的复杂非线性关系;通过SHAP方法有效量化了四种输入参数对于冻结黏土力学参数的影响程度:对于SSC模式的影响程度从大到小为α、p、T和b,对于qd的影响程度从大到小为T、b、α和p...