多年冻土退化后,融区周期性冻结和融化作用会严重损害输油管道的稳定性.为查明原油管道埋设区多年冻土分布、发育现状,计划分别采用二维、三维高密度电法进行探测.为了进一步研究高密度电法不同探测方式的有效性和冻土的电阻率响应特征,首先在管道下部空间建立未融化、半融化、贯穿融化3种模型,采用EarthImager 2D和EarthImager 3D软件进行有限单元法正演和圆滑约束的最小二乘法反演;随后根据数值模拟结果,对比研究3种模型电阻率响应特征及反演结果的差异性,总结二维、三维高密度电法勘探效果;最后利用勘探实例进一步验证.结果表明,高密度电法在多年冻土探测领域是一种行之有效的方法:二维高密度电法对未融化、贯穿融化探测效果优于半融化状态;三维高密度电法采集数据更加丰富,目标体形态展示更加直观精细,反演结果更加接近理论模型,适用各种冻土融化状态.野外实例进一步验证了数值模拟结果,三维高密度电法的应用也对多年冻土精细探测领域提供了新思路.
中俄原油管道工程北起我国漠河,南到大庆,管道工程穿越大兴安岭多年冻土区和南部松嫩平原的季节冻土区。管道沿线冻土属于高温、高含冰冻土,土体稳定性差,对管道的灾害性评价具有一定的必要性。该文选取管道沿线松岭、加格达奇和喇嘛甸3个冻土区,将自然环境、冻土状况及管道扰动因素作为评价指标,运用可变模糊集对立统一定理的评价方法,进行多年冻土及季节冻土冻害破坏的稳定性评价。通过分析评价,松岭区为大片融区多年冻土,评价的计算值为3.41,属于Ⅲ级冻土,稳定性为不良;加格达奇为岛状多年冻土,计算结果为2.468,为Ⅱ级冻土,稳定性较好;喇嘛甸是管道沿线季节冻土区,土体受盐渍灾害影响,评价值为3.254,等级为Ⅲ级,为不良冻土。
全球气候变暖加剧了多年冻土退化,冻土融化下沉严重威胁管道的安全运营,准确评价管基土融沉风险等级显得尤为重要。选取含水率、孔隙比、含冰量、超塑含水率4个重要的融沉影响因素,通过熵值法对各指标进行客观赋权,采用可拓云模型对多年冻土区管基土融沉等级进行评价。评价模型在中俄原油管道漠大线的实践应用表明:现行规范对多年冻土区管基土评价指标单一、界限含水率过大,同时k-means评价融沉等级界限相对模糊,而熵值-可拓云模型能够避免融沉指标界限模糊、影响因素间的不确定性,使评价结果更符合实际情况,可为多年冻土区管道的设计、运营管理中的融沉防护方案提供科学依据与理论参考。(图3,表7,参33)
中俄原油管道穿越多年冻土带,由于管沟土的导热性差异,导致管道沿线冻土融沉变形问题严重。选取中俄原油管道沿线砾砂、粉土、粉质黏土、黏土及泥炭质土5种典型地基土进行导热系数测试,以掌握导热系数随影响因素的变化规律。测定5种地基土的导热系数,分析导热系数与含水率、干密度之间的关系,并建立回归方程;根据不同土质条件,分析导热系数随含泥量、塑性指数、烧失量的变化规律;采用灰色关联分析模型计算各影响因素与每种地基土导热系数的关联度。结果表明:5种地基土的导热系数随含水率、干密度的变化而变化;土质条件对导热系数的影响非常大;不同因素对导热性质的影响程度不同。提出了针对不同类型地基土的冻害防治措施,以便为多年冻土区在役或拟建油气管道的冻害防治提供参考。(图6,表4,参22)
中俄原油管道作为我国四大能源战略通道之一,在保障国家能源安全、优化油品供输格局、推进中蒙俄经济走廊建设和深化中俄战略合作等方面都具有十分重要的意义。针对中俄原油管道沿线冻土灾害和环境问题,文章提出了"控制融化"的冻土调控原则和成套的冻土灾害防控技术,为中俄原油管道的绿色建设和安全运营提供重要保障。研究成果可为国内外多年冻土区类似工程的建设提供参考,并将为冻土工程、管道运输等领域学科发展提供重要支撑。
中俄二线与漠大线一般地段并行敷设,地形地貌等外部自然条件基本相同。但由于多年冻土独特的工程和物理特点,在后续工程建设后,冻土情况发生了较大变化。因此,需要通过对中俄二线管道沿线冻土及漠大线建设后新出现的冰椎、冰幔、冻胀差异等冷生病害进行冻害补充调查;另外,结合冻土的热敏感性强、热稳定性差、结构易被破坏等特点,调查分析运行期间出现的问题,提出解决方案,并对典型冻土地段进行复核研究。由此保证冻土资料在中俄二线建设时的准确性,降低新工程建设以后出现冷生病害的风险,同时为冻土区管道热、应力研究及管道设计建设提供基础资料。
中俄原油管道是我国第一条位于高寒冻土区的大型管道工程。中俄原油管道沿线多为岛状不连续、不稳定冻土,冻胀和融沉风险高。冻土灾害关键致因因素是温度、土壤类型和含水率。文章阐述了中俄原油管道的冻胀、融沉和热熔滑坡三种典型地质灾害的致因因素和失效形式。根据中俄管道冻土区的特性,提出了管道运行中位移和温度场监测的实施方法,以及应用的回填、保温、疏水和支撑等综合性防护措施。
中俄原油管道二线与漠大线管道并行,途经大小兴安岭和嫩江河谷的多年冻土区,为保证漠大线管道的安全,中俄二线冬季施工时必须选择合适的爆破方案和监测技术。多年冻土区的工程地质类型不同,施工爆破的参数也不同,同一地质条件下大规模爆破前必须进行小药量试炮,并同时配合振动监测,只有选择合理的爆破参数及监测手段,才能保证漠大线管道的安全和中俄二线在多年冻土区的建设进度,才能减小两条管道的并行间距,进而减少林区森林砍伐面积,从而产生可观的经济效益和社会效益。
多年冻土区石油污染物迁移过程和特点、污染定量评价、防治和治理措施研发,都是目前寒区经济发展和能源开发迫切需要解决的重要课题.通过室内试验对土体温度场分布、水分分布和石油总量分布的监测分析,研究了冻融循环作用对迁移过程的影响机制.试验结果表明,冻融循环作用通过影响石油污染物本身的物理性质、土颗粒对石油污染物的吸附作用和土体内水相的分布和相状态,影响了石油污染物的迁移过程.原油黏度随温度的降低逐渐增加,使得原油在土体中的迁移能力降低.冻融循环是油水迁移的主要驱动力之一,随着冻融循环的增加,石油污染物和水分向上迁移并聚集,石油随土样高度增加逐渐减小,而水分随高度增加而增加且在一定的位置聚集.研究成果可为多年冻土区石油污染迁移过程和定量评价及防治治理提供重要基础和参考.
通过对中俄原油管道漠河-加格达奇段多年冻土区的现场勘查研究,统计了管道运营以来出现的冻土次生地质灾害主要有冻胀、融沉、水毁、冻胀丘、冰椎等.在研究区域特定的气候背景下,管道的修建和季节性变化的正油温运营,破坏了管道周围冻土的水热平衡,使得管道周围土体出现差异性冻胀和融沉,这种差异性位移量的累积对管道安全稳定长期运营造成了威胁.以管道里程MDX364处的冻胀丘为例,利用探地雷达进行了现场探测.结果表明:管道周围存在的融区为冻胀丘的发生和发展提供了水源补给通道,管道的热影响加速了冻胀丘的发展和消融,2014年3-10月管道周围地表产生的差异性位移超过了1.1 m.针对该次生开放型季节冻胀丘,提出了修筑或疏通管道附近的排水通道、钻孔放水和保温排水渗沟等防治措施.研究成果能为中俄原油管道的安全稳定运营提供技术支撑,为其他冻土区管道设计施工和运营维护提供参考和依据.