在列表中检索

共检索到 4

降雪量和积雪深度的关系是降雪预报及水文气候模拟中的重要参数。本文利用吉林省50个站点1961—2021年的降水量、积雪深度、气温、风速和天气现象等气象观测资料,分析了降雪量和新增积雪深度的关系及主要气候影响因子。结果表明,在中等及以上强度的降雪过程中,吉林省新增积雪深度(D)与降雪量(S)的比值(深量比,Rds)平均为0.96 cm·mm-1;该比值存在空间差异,呈西部小东部大的分布特征,且存在明显的月际、年际和年代际变化特征,其中月际变化呈现不对称的抛物线型,12月和1月为大值时段;近60年来Rds呈减小趋势,变化速率为-0.01 cm·mm-1·(10a)-1;降雪日Rds与气温呈明显反相关关系,其中在-12~0℃的温度区间,Rds随气温上升呈明显减小趋势。气候变暖、降水量增加和风速的减小是降雪过程中降雪量与新增雪深关系年代际变化的直接原因。揭示降雪量和新增雪深的关系对于认识东北亚中高纬度降雪积雪特征及其成因具有重要意义。

期刊论文 2024-05-14

降雪量和积雪深度的关系是降雪预报及水文气候模拟中的重要参数。本文利用吉林省50个站点1961—2021年的降水量、积雪深度、气温、风速和天气现象等气象观测资料,分析了降雪量和新增积雪深度的关系及主要气候影响因子。结果表明,在中等及以上强度的降雪过程中,吉林省新增积雪深度(D)与降雪量(S)的比值(深量比,Rds)平均为0.96 cm·mm-1;该比值存在空间差异,呈西部小东部大的分布特征,且存在明显的月际、年际和年代际变化特征,其中月际变化呈现不对称的抛物线型,12月和1月为大值时段;近60年来Rds呈减小趋势,变化速率为-0.01 cm·mm-1·(10a)-1;降雪日Rds与气温呈明显反相关关系,其中在-12~0℃的温度区间,Rds随气温上升呈明显减小趋势。气候变暖、降水量增加和风速的减小是降雪过程中降雪量与新增雪深关系年代际变化的直接原因。揭示降雪量和新增雪深的关系对于认识东北亚中高纬度降雪积雪特征及其成因具有重要意义。

期刊论文 2024-05-14

利用1961-2015年吉林省46个气象站的气象数据,采用气候诊断分析方法,研究了吉林省季节冻土区年冻融指数的时空变化特征及其与经度、纬度、海拔的关系。结果表明:吉林省冻结指数呈由北向南逐渐降低,融化指数由西向东逐渐降低的趋势分布。1961-2015年冻结指数呈显著下降趋势,AFI(空气冻结指数)和SFI(地表冻结指数)气候倾向率分别为-48.7℃·d·(10a)-1和-166.8℃·d·(10a)-1。融化指数显著上升,ATI(空气融化指数)和STI(地表融化指数)分别以57.0℃·d·(10a)-1和93.7℃·d·(10a)-1的气候倾向率显著上升。SFI、ATI和STI分别于2001年、1994年和1997年发生了突变。20世纪60、70年代冻结指数异常偏高,融化指数异常偏低。吉林省年冻融指数的变化趋势在未来整体上依然延续下去,即冻结指数为下降趋势,融化指数为上升趋势。冻结指数受纬度影响最大,随着纬度的升高而上升,融化指数受海拔影响最大,随着海拔的升高而显著下降。冻结指数气候倾向率随着海拔的升高而上升,融化指数气候倾向率随着纬度的升高而上升。

期刊论文 2020-06-19

为了掌握季节冻土冻结深度的变化对气候的响应,利用1961-2015年吉林省46个气象站的逐日平均气温、地表温度、积雪深度、冻土冻结深度等数据,采用线性倾向估计、突变分析等方法,研究了吉林省季节冻土冻结深度的时空演变规律及其与气温、积雪的关系。结果表明:吉林省季节冻土最大冻结深度呈由西向东逐渐减小的空间分布特征,绝大多数站最大冻结深度呈减小趋势。基本上在10月开始冻结,次年3月达到最深, 6月完全融化。西部冻土冻结深度变幅较大,其次是中部,东部最小。1961-2015年季节冻土最大冻结深度以-5.8 cm·(10a)-1的速率显著减小(P<0.01)。最大冻结深度基本上呈逐年代减小的趋势,从20世纪90年代开始,最大冻结深度明显减小。最大冻结深度在1987年发生了突变,突变后平均最大冻结深度比突变前平均最大冻结深度减小了22.2 cm。通过分析气温和积雪深度对冻结深度的影响,认为冻土冻结深度对气温变化较为敏感,绝大多数站最大冻结深度与平均气温呈负相关关系。在年际变化上,气温的上升是最大冻结深度减小的主要原因。在季节冻土稳定冻结期,积雪深度超过10 cm,保温作...

期刊论文 2019-09-04
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-4条  共4条,1页