针对高速铁路线路上积雪深度的动态判识问题,提出一种基于铁路综合视频图像识别的积雪深度判识方法 .首先,对通过综合视频监控系统获得的雪深图像进行处理,利用U-Net神经网络进行图像分割,建立轨道上的雪深数据集.然后,对雪深数据集进行标注,将雪深图像分为100 mm以下、100 mm~轨面和高于轨面3个类别.在此基础上提出基于DenseNet-201深度卷积神经网络模型的雪深图像识别方法 .最后,对模型进行验证.研究结果表明:对于光线较好的图像,采用DenseNet-201深度卷积神经网络模型的识别准确率达到93.57%.相较于VGG-16、ResNet-50等模型识别结果,虽然DenseNet-201深度卷积神经网络模型计算耗时长于ResNet-50模型,但是,识别准确率较ResNet-50、VGG-16模型分别提高了2.08%和4.24%.研究成果可为高速铁路沿线积雪深度的动态掌握提供技术支撑.
冰川识别对于周边地区水资源与气候变化监测具有重要意义。全极化SAR影像包含地物表面散射、偶次散射、体散射、统计特性等丰富的特征,而深度学习能够充分挖掘影像信息,因此使用全极化SAR影像结合深度学习能够得到精确的冰川识别效果。本文基于喜马拉雅山脉西端ALOS2-PALSAR全极化影像,使用VGG16特征提取网络与全卷积神经网络模型U-net相结合的VGG16-unet对冰川进行识别。采用的特征包括极化相干矩阵对角线元素、Freeman-Durden、H/A/α、Pauli、VanZyl、Yamaguchi这5种极化分解参数共计19种特征。为了充分利用影像信息,对这些特征进行分析与组合,并比较它们之间的冰川识别精度,以选取最佳特征。由于冰川与非冰川的地形具有明显差异,因此将DEM、坡度、局部入射角等作为辅助特征与极化特征结合。通过对比不同极化特征分类精度得出,基于物理特性的Pauli、Freeman-Durden、VanZyl、Yamaguchi特征分类的精度较高,其中Pauli特征分类的精度最高,整体精度(OA)达到92.54%,平均用户交并比(mIoU)达到78.78%。加入地形数据后...
青藏公路作为进出西藏的主要干道,对西藏经济发展有着极其重要作用。受多年冻土的影响,青藏公路在运营过程中产生了较多的病害。为研究多年冻土区青藏公路楚玛尔河K2942路段公路病害与路面平整度,通过采用无人机航拍来获得影像数据,利用遥感图像分析软件中的图像分割功能对研究区域的病害类型和发生面积进行了定量化分类提取,并利用地理信息系统(GIS)中的空间分析技术获取了路面平整度信息。通过研究,提出了以无人机航拍图像为基础进行公路病害定量提取的新方法,为更高效、快速、便捷地研究青藏公路多年冻土区公路病害提供参考。