共检索到 11

选择海螺沟冰川退缩区,对冰川退缩年龄分别为0年、30年、40年、52年、80年、120年的样点按土壤发生层分层采集样品,通过分析样品的化学风化速率及理化性质变化,探讨小冰期结束以来土壤发育过程及影响因素,并评估不同阶段土壤质量。结果表明,退缩区前40年样点中主要以碳酸盐风化为主,80年后硅酸盐风化作用增强。土壤长期风化速率随土壤年龄呈现升高-降低-升高的趋势,52年样点长期风化速率最低,为48.06cmol/(m2·a),矿物组成和气候是影响土壤风化速率的重要原因。土壤的粒度组成以砂粒为主,多数样点占比约为80%~90%。随着土壤年龄增加,容重值和pH减小,pH从8.54减小到5左右;土层厚度、土壤有机质(SOC)及总氮(TN)含量增加,这些土壤理化指标的快速变化表明冰川退缩区土壤发育迅速。适宜的温度、充足的降水以及快速的植被演替可能是退缩区土壤快速发育的原因。模糊数学法计算土壤质量的结果显示,除了0年样点,其余样点土壤质量指数(SQI)均大于0.4,说明退缩区土壤质量状况整体属于中等水平,土壤肥力状况较好。研究结果有助于揭示土壤矿物风化过程和土壤发育的影响因素,...

期刊论文 2024-03-13

选择海螺沟冰川退缩区,对冰川退缩年龄分别为0年、30年、40年、52年、80年、120年的样点按土壤发生层分层采集样品,通过分析样品的化学风化速率及理化性质变化,探讨小冰期结束以来土壤发育过程及影响因素,并评估不同阶段土壤质量。结果表明,退缩区前40年样点中主要以碳酸盐风化为主,80年后硅酸盐风化作用增强。土壤长期风化速率随土壤年龄呈现升高-降低-升高的趋势,52年样点长期风化速率最低,为48.06cmol/(m2·a),矿物组成和气候是影响土壤风化速率的重要原因。土壤的粒度组成以砂粒为主,多数样点占比约为80%~90%。随着土壤年龄增加,容重值和pH减小,pH从8.54减小到5左右;土层厚度、土壤有机质(SOC)及总氮(TN)含量增加,这些土壤理化指标的快速变化表明冰川退缩区土壤发育迅速。适宜的温度、充足的降水以及快速的植被演替可能是退缩区土壤快速发育的原因。模糊数学法计算土壤质量的结果显示,除了0年样点,其余样点土壤质量指数(SQI)均大于0.4,说明退缩区土壤质量状况整体属于中等水平,土壤肥力状况较好。研究结果有助于揭示土壤矿物风化过程和土壤发育的影响因素,...

期刊论文 2024-03-13

选择海螺沟冰川退缩区,对冰川退缩年龄分别为0年、30年、40年、52年、80年、120年的样点按土壤发生层分层采集样品,通过分析样品的化学风化速率及理化性质变化,探讨小冰期结束以来土壤发育过程及影响因素,并评估不同阶段土壤质量。结果表明,退缩区前40年样点中主要以碳酸盐风化为主,80年后硅酸盐风化作用增强。土壤长期风化速率随土壤年龄呈现升高-降低-升高的趋势,52年样点长期风化速率最低,为48.06cmol/(m2·a),矿物组成和气候是影响土壤风化速率的重要原因。土壤的粒度组成以砂粒为主,多数样点占比约为80%~90%。随着土壤年龄增加,容重值和pH减小,pH从8.54减小到5左右;土层厚度、土壤有机质(SOC)及总氮(TN)含量增加,这些土壤理化指标的快速变化表明冰川退缩区土壤发育迅速。适宜的温度、充足的降水以及快速的植被演替可能是退缩区土壤快速发育的原因。模糊数学法计算土壤质量的结果显示,除了0年样点,其余样点土壤质量指数(SQI)均大于0.4,说明退缩区土壤质量状况整体属于中等水平,土壤肥力状况较好。研究结果有助于揭示土壤矿物风化过程和土壤发育的影响因素,...

期刊论文 2024-03-13

为明确青藏公路沿线土地土壤质量的基本特征,通过采集沿线3种不同土地利用类型(农地、草地和沙地)的土壤样品,采用主成分分析法(PCA,Principal Component Analysis)筛选最小数据集(MDS,Minimum Data Set)指标,并构建土壤质量指数(SQI,Soil Quality Index)定量评价其土壤质量。结果表明:(1)相较于农地和草地,沙地的土壤肥力较为贫瘠,其土壤有机质、全氮和有效磷的土壤肥力等级均为6级。9个土壤指标均为中低度敏感指标,沙地土壤黏粒和粉粒含量具有更强的空间分异性。(2)沿线土壤质量评价最小数据集由全钾、全磷、有机质、黏粒和粉粒组成,最小数据集能够较好地替代全数据集进行土壤质量评价(p<0.01)。(3)沿线农地的土壤质量指数SQI(0.535±0.043)高于草地SQI(0.499±0.044)和沙地SQI(0.449±0.066)。该研究发现沿线农地土壤质量为中等水平,沿线草地和沿线沙地土壤质量处于较低水平,土壤有机质是影响青藏公沿线土壤质量的主要因素。

期刊论文 2022-01-18 DOI: 10.13869/j.cnki.rswc.2022.02.036

为明确青藏公路沿线土地土壤质量的基本特征,通过采集沿线3种不同土地利用类型(农地、草地和沙地)的土壤样品,采用主成分分析法(PCA,Principal Component Analysis)筛选最小数据集(MDS,Minimum Data Set)指标,并构建土壤质量指数(SQI,Soil Quality Index)定量评价其土壤质量。结果表明:(1)相较于农地和草地,沙地的土壤肥力较为贫瘠,其土壤有机质、全氮和有效磷的土壤肥力等级均为6级。9个土壤指标均为中低度敏感指标,沙地土壤黏粒和粉粒含量具有更强的空间分异性。(2)沿线土壤质量评价最小数据集由全钾、全磷、有机质、黏粒和粉粒组成,最小数据集能够较好地替代全数据集进行土壤质量评价(p<0.01)。(3)沿线农地的土壤质量指数SQI(0.535±0.043)高于草地SQI(0.499±0.044)和沙地SQI(0.449±0.066)。该研究发现沿线农地土壤质量为中等水平,沿线草地和沿线沙地土壤质量处于较低水平,土壤有机质是影响青藏公沿线土壤质量的主要因素。

期刊论文 2022-01-18 DOI: 10.13869/j.cnki.rswc.2022.02.036

为明确青藏公路沿线土地土壤质量的基本特征,通过采集沿线3种不同土地利用类型(农地、草地和沙地)的土壤样品,采用主成分分析法(PCA,Principal Component Analysis)筛选最小数据集(MDS,Minimum Data Set)指标,并构建土壤质量指数(SQI,Soil Quality Index)定量评价其土壤质量。结果表明:(1)相较于农地和草地,沙地的土壤肥力较为贫瘠,其土壤有机质、全氮和有效磷的土壤肥力等级均为6级。9个土壤指标均为中低度敏感指标,沙地土壤黏粒和粉粒含量具有更强的空间分异性。(2)沿线土壤质量评价最小数据集由全钾、全磷、有机质、黏粒和粉粒组成,最小数据集能够较好地替代全数据集进行土壤质量评价(p<0.01)。(3)沿线农地的土壤质量指数SQI(0.535±0.043)高于草地SQI(0.499±0.044)和沙地SQI(0.449±0.066)。该研究发现沿线农地土壤质量为中等水平,沿线草地和沿线沙地土壤质量处于较低水平,土壤有机质是影响青藏公沿线土壤质量的主要因素。

期刊论文 2022-01-18 DOI: 10.13869/j.cnki.rswc.2022.02.036

土壤质量评价是提高对土壤质量理解的关键环节。为了了解青藏高原多年冻土区高寒草地土壤质量的基本情况,在青藏高原腹地西大滩至安多地区,根据不同海拔梯度和植被盖度共采集了154个土壤样品。通过主成分分析(PCA)法确定了影响青藏高原多年冻土区高寒草地土壤质量的最小数据集(MDS):全氮、全磷、全钾。根据影响土壤质量的最小数据集对青藏高原多年冻土区高寒草地土壤质量进行评价,得出了不同海拔、不同植被盖度下的土壤质量指数(SQI)。通过对不同海拔、不同植被盖度的土壤质量指数进行对比研究表明:随着海拔的升高,SQI呈增加的趋势,即海拔4 300~4 600 m(0.270±0.043)<海拔4 600~4 900 m(0.326±0.061)<海拔4 900~5 200 m(0.410±0.075);随着植被盖度的增加,SQI也呈现增加的变化趋势,即植被盖度小于50%(0.262~0.265)<植被盖度大于50%(0.336~0.344)。在分别考虑了有机质、盐分、土壤水分对土壤质量的影响下得出的土壤质量指数值与基于最小数据集得到的土壤质量指数相一致,说明基于主成分分析的最小数据集...

期刊论文 2018-07-24

土壤质量评价是提高对土壤质量理解的关键环节。为了了解青藏高原多年冻土区高寒草地土壤质量的基本情况,在青藏高原腹地西大滩至安多地区,根据不同海拔梯度和植被盖度共采集了154个土壤样品。通过主成分分析(PCA)法确定了影响青藏高原多年冻土区高寒草地土壤质量的最小数据集(MDS):全氮、全磷、全钾。根据影响土壤质量的最小数据集对青藏高原多年冻土区高寒草地土壤质量进行评价,得出了不同海拔、不同植被盖度下的土壤质量指数(SQI)。通过对不同海拔、不同植被盖度的土壤质量指数进行对比研究表明:随着海拔的升高,SQI呈增加的趋势,即海拔4 300~4 600 m(0.270±0.043)<海拔4 600~4 900 m(0.326±0.061)<海拔4 900~5 200 m(0.410±0.075);随着植被盖度的增加,SQI也呈现增加的变化趋势,即植被盖度小于50%(0.262~0.265)<植被盖度大于50%(0.336~0.344)。在分别考虑了有机质、盐分、土壤水分对土壤质量的影响下得出的土壤质量指数值与基于最小数据集得到的土壤质量指数相一致,说明基于主成分分析的最小数据集...

期刊论文 2018-07-24

土壤质量评价是提高对土壤质量理解的关键环节。为了了解青藏高原多年冻土区高寒草地土壤质量的基本情况,在青藏高原腹地西大滩至安多地区,根据不同海拔梯度和植被盖度共采集了154个土壤样品。通过主成分分析(PCA)法确定了影响青藏高原多年冻土区高寒草地土壤质量的最小数据集(MDS):全氮、全磷、全钾。根据影响土壤质量的最小数据集对青藏高原多年冻土区高寒草地土壤质量进行评价,得出了不同海拔、不同植被盖度下的土壤质量指数(SQI)。通过对不同海拔、不同植被盖度的土壤质量指数进行对比研究表明:随着海拔的升高,SQI呈增加的趋势,即海拔4 300~4 600 m(0.270±0.043)<海拔4 600~4 900 m(0.326±0.061)<海拔4 900~5 200 m(0.410±0.075);随着植被盖度的增加,SQI也呈现增加的变化趋势,即植被盖度小于50%(0.262~0.265)<植被盖度大于50%(0.336~0.344)。在分别考虑了有机质、盐分、土壤水分对土壤质量的影响下得出的土壤质量指数值与基于最小数据集得到的土壤质量指数相一致,说明基于主成分分析的最小数据集...

期刊论文 2018-07-24

土壤质量评价是提高对土壤质量理解的关键环节。为了了解青藏高原多年冻土区高寒草地土壤质量的基本情况,在青藏高原腹地西大滩至安多地区,根据不同海拔梯度和植被盖度共采集了154个土壤样品。通过主成分分析(PCA)法确定了影响青藏高原多年冻土区高寒草地土壤质量的最小数据集(MDS):全氮、全磷、全钾。根据影响土壤质量的最小数据集对青藏高原多年冻土区高寒草地土壤质量进行评价,得出了不同海拔、不同植被盖度下的土壤质量指数(SQI)。通过对不同海拔、不同植被盖度的土壤质量指数进行对比研究表明:随着海拔的升高,SQI呈增加的趋势,即海拔4 300~4 600 m(0.270±0.043)<海拔4 600~4 900 m(0.326±0.061)<海拔4 900~5 200 m(0.410±0.075);随着植被盖度的增加,SQI也呈现增加的变化趋势,即植被盖度小于50%(0.262~0.265)<植被盖度大于50%(0.336~0.344)。在分别考虑了有机质、盐分、土壤水分对土壤质量的影响下得出的土壤质量指数值与基于最小数据集得到的土壤质量指数相一致,说明基于主成分分析的最小数据集...

期刊论文 2018-07-24
  • 首页
  • 1
  • 2
  • 末页
  • 跳转
当前展示1-10条  共11条,2页