为探究寒温带白桦(Betula platyphylla)次生林土壤酶活性随林龄变化的动态特征,分析土壤酶活性与环境因子的关系,选择大兴安岭北部不同林龄(30、45、66 a)白桦林为研究对象,测定土壤深度(h)为0-1、4.77~70.34 mg·g-1、0.90~11.12 mg·g-1、0.07~0.75 mg·g-1。林龄对土壤酶活性有显著影响,林龄为30 a时,白桦林土壤酶活性较低;林龄为45 a时,白桦林土壤过氧化氢酶、蔗糖酶、酸性磷酸酶活性相对较高,林龄为66 a时,白桦林土壤脲酶活性较高。林龄为30...
为探究寒温带白桦(Betula platyphylla)次生林土壤酶活性随林龄变化的动态特征,分析土壤酶活性与环境因子的关系,选择大兴安岭北部不同林龄(30、45、66 a)白桦林为研究对象,测定土壤深度(h)为0-1、4.77~70.34 mg·g-1、0.90~11.12 mg·g-1、0.07~0.75 mg·g-1。林龄对土壤酶活性有显著影响,林龄为30 a时,白桦林土壤酶活性较低;林龄为45 a时,白桦林土壤过氧化氢酶、蔗糖酶、酸性磷酸酶活性相对较高,林龄为66 a时,白桦林土壤脲酶活性较高。林龄为30...
为探究寒温带白桦(Betula platyphylla)次生林土壤酶活性随林龄变化的动态特征,分析土壤酶活性与环境因子的关系,选择大兴安岭北部不同林龄(30、45、66 a)白桦林为研究对象,测定土壤深度(h)为0-1、4.77~70.34 mg·g-1、0.90~11.12 mg·g-1、0.07~0.75 mg·g-1。林龄对土壤酶活性有显著影响,林龄为30 a时,白桦林土壤酶活性较低;林龄为45 a时,白桦林土壤过氧化氢酶、蔗糖酶、酸性磷酸酶活性相对较高,林龄为66 a时,白桦林土壤脲酶活性较高。林龄为30...
为探究寒温带白桦(Betula platyphylla)次生林土壤酶活性随林龄变化的动态特征,分析土壤酶活性与环境因子的关系,选择大兴安岭北部不同林龄(30、45、66 a)白桦林为研究对象,测定土壤深度(h)为0-1、4.77~70.34 mg·g-1、0.90~11.12 mg·g-1、0.07~0.75 mg·g-1。林龄对土壤酶活性有显著影响,林龄为30 a时,白桦林土壤酶活性较低;林龄为45 a时,白桦林土壤过氧化氢酶、蔗糖酶、酸性磷酸酶活性相对较高,林龄为66 a时,白桦林土壤脲酶活性较高。林龄为30...
为探究寒温带白桦(Betula platyphylla)次生林土壤酶活性随林龄变化的动态特征,分析土壤酶活性与环境因子的关系,选择大兴安岭北部不同林龄(30、45、66 a)白桦林为研究对象,测定土壤深度(h)为0-1、4.77~70.34 mg·g-1、0.90~11.12 mg·g-1、0.07~0.75 mg·g-1。林龄对土壤酶活性有显著影响,林龄为30 a时,白桦林土壤酶活性较低;林龄为45 a时,白桦林土壤过氧化氢酶、蔗糖酶、酸性磷酸酶活性相对较高,林龄为66 a时,白桦林土壤脲酶活性较高。林龄为30...
土壤酶参与土壤系统的养分循环过程,是联系植物和土壤养分的关键纽带。土壤酶活性对降水格局变化响应敏感,这种响应对于缺水且养分贫瘠的荒漠生态系统显得尤为重要。然而,早春积雪完全融化后首次降雨时间及降雨量如何影响土壤养分及土壤酶活性还鲜见相关报道。以新疆古尔班通古特沙漠为研究区,在早春积雪完全融化后,设置3个首次降雨时间(积雪完全融化后第10天、20天和30天)和3个降雨梯度(5 mm、10 mm和15 mm),于植物生长旺季采集土壤样品,研究土壤养分含量和土壤酶活性的响应特征。结果表明:积雪完全融化后不同首次降雨时间下5mm降雨处理以及积雪完全融化后第30天下各降雨量处理对土壤养分和酶活性影响不显著。积雪完全融化后第10天,随降雨量增加,土壤全碳呈显著先下降后增加趋势,全钾呈显著增加趋势,而土壤微生物量碳呈显著降低趋势;积雪完全融化后第20天,随降雨量增加,速效氮、土壤蔗糖酶活性、土壤微生物量碳氮呈先下降后增加趋势,土壤全碳和多酚氧化酶活性显著下降,土壤全钾和碱性磷酸酶活性显著增加。模拟10 mm降雨,随首次降雨时间推迟,土壤全氮、速效氮、速效磷、土壤蔗糖酶活性和土壤微生物量碳呈增加趋势;...
土壤酶参与土壤系统的养分循环过程,是联系植物和土壤养分的关键纽带。土壤酶活性对降水格局变化响应敏感,这种响应对于缺水且养分贫瘠的荒漠生态系统显得尤为重要。然而,早春积雪完全融化后首次降雨时间及降雨量如何影响土壤养分及土壤酶活性还鲜见相关报道。以新疆古尔班通古特沙漠为研究区,在早春积雪完全融化后,设置3个首次降雨时间(积雪完全融化后第10天、20天和30天)和3个降雨梯度(5 mm、10 mm和15 mm),于植物生长旺季采集土壤样品,研究土壤养分含量和土壤酶活性的响应特征。结果表明:积雪完全融化后不同首次降雨时间下5mm降雨处理以及积雪完全融化后第30天下各降雨量处理对土壤养分和酶活性影响不显著。积雪完全融化后第10天,随降雨量增加,土壤全碳呈显著先下降后增加趋势,全钾呈显著增加趋势,而土壤微生物量碳呈显著降低趋势;积雪完全融化后第20天,随降雨量增加,速效氮、土壤蔗糖酶活性、土壤微生物量碳氮呈先下降后增加趋势,土壤全碳和多酚氧化酶活性显著下降,土壤全钾和碱性磷酸酶活性显著增加。模拟10 mm降雨,随首次降雨时间推迟,土壤全氮、速效氮、速效磷、土壤蔗糖酶活性和土壤微生物量碳呈增加趋势;...
2013年8月13日10月2日,在大兴安岭冻土区,采集0~30 cm深度的土壤,通过室内模拟培养实验,分析了3种温度和添加白毛羊胡子草(Eriophorum vaginatum)根系条件下,土壤碳、氮含量和土壤酶活性。研究结果表明,在5℃条件下,培养50 d后,未添加根系的土壤样品溶解性有机碳含量、微生物量碳含量、铵态氮含量、硝态氮含量、蔗糖酶活性和脲酶活性分别为249~312μg/g、2 442~3 150μg/g、98.43~216μg/g、15.58~17.07μg/g、22.37~54.63 mg/(g·24 h)和1.94~2.32 mg/(g·24 h);在添加根系条件下,土壤溶解性有机碳、硝态氮、铵态氮含量都增大,土壤蔗糖酶活性增强。在10℃且未添加根系的培养条件下,其分别为396~425μg/g、1 831~2 686μg/g、107~342μg/g、18.33~20.05μg/g、23.96~50.34 mg/(g·24 h)和1.52~2.01 mg/(g·24 h);在添加根系条件下,土壤溶解性有机碳、微生物量碳含量都增大,土壤蔗糖酶和脲酶活...
为了研究马衔山多年冻土区和非多年冻土区土壤微生物碳氮、土壤酶活性的差异,选取多年冻土区、季节冻土区和交界区为对象,分析了0~30 cm土层微生物碳氮和转化酶、脲酶、中性磷酸酶、淀粉酶、过氧化氢酶、多酚氧化酶酶活性不同季节的变化特征。结果表明:全氮、总有机碳、微生物量碳氮与多数土壤酶之间呈显著相关关系。在不同区域,土壤微生物碳氮均在0~10 cm含量最高,10~20 cm次之,20~30 cm最低。土壤微生物碳氮在生长季表现为含量逐渐增加,但是多年冻土区与季节冻土区差异不大。土壤酶活性在深度方面表现与微生物碳氮含量变化一致。土壤酶并无的季节变化规律。在多年冻土区,转化酶、多酚氧化酶和磷酸酶活性明显高于非多年冻土区。本研究表明,尽管多年冻土区的植被和土壤总有机碳明显高于非多年冻土区,其土壤微生物碳氮含量相当,且一些土壤酶活性也相当。说明非多年冻土区土壤的生物地球化学相对强度较大。因此,多年冻土退化后可能会导致生态系统的退化。
为了研究马衔山多年冻土区和非多年冻土区土壤微生物碳氮、土壤酶活性的差异,选取多年冻土区、季节冻土区和交界区为对象,分析了0~30 cm土层微生物碳氮和转化酶、脲酶、中性磷酸酶、淀粉酶、过氧化氢酶、多酚氧化酶酶活性不同季节的变化特征。结果表明:全氮、总有机碳、微生物量碳氮与多数土壤酶之间呈显著相关关系。在不同区域,土壤微生物碳氮均在0~10 cm含量最高,10~20 cm次之,20~30 cm最低。土壤微生物碳氮在生长季表现为含量逐渐增加,但是多年冻土区与季节冻土区差异不大。土壤酶活性在深度方面表现与微生物碳氮含量变化一致。土壤酶并无的季节变化规律。在多年冻土区,转化酶、多酚氧化酶和磷酸酶活性明显高于非多年冻土区。本研究表明,尽管多年冻土区的植被和土壤总有机碳明显高于非多年冻土区,其土壤微生物碳氮含量相当,且一些土壤酶活性也相当。说明非多年冻土区土壤的生物地球化学相对强度较大。因此,多年冻土退化后可能会导致生态系统的退化。