以川西季节性冻土区土钉支护边坡受冻融作用而产生破坏、滑塌等工程灾害为例,分析冻融作用对季节性冻土区土钉边坡的影响机理;基于水热力耦合理论建立土钉支护边坡模型,研究季节性冻土区土钉支护边坡的应力-应变规律。结果表明:在冻融作用下,土钉在钉头处的轴力变化最大,沿土钉方向轴力变化值不断减小,在冻结期轴力处于最大值;坡体水平位移随坡高增加不断增大,且冻结期的水平位移为最大值。
以川西季节性冻土区土钉支护边坡受冻融作用而产生破坏、滑塌等工程灾害为例,分析冻融作用对季节性冻土区土钉边坡的影响机理;基于水热力耦合理论建立土钉支护边坡模型,研究季节性冻土区土钉支护边坡的应力-应变规律。结果表明:在冻融作用下,土钉在钉头处的轴力变化最大,沿土钉方向轴力变化值不断减小,在冻结期轴力处于最大值;坡体水平位移随坡高增加不断增大,且冻结期的水平位移为最大值。
以川西季节性冻土区土钉支护边坡受冻融作用而产生破坏、滑塌等工程灾害为例,分析冻融作用对季节性冻土区土钉边坡的影响机理;基于水热力耦合理论建立土钉支护边坡模型,研究季节性冻土区土钉支护边坡的应力-应变规律。结果表明:在冻融作用下,土钉在钉头处的轴力变化最大,沿土钉方向轴力变化值不断减小,在冻结期轴力处于最大值;坡体水平位移随坡高增加不断增大,且冻结期的水平位移为最大值。
为了更科学地评价地震荷载作用下土钉支护多年冻土区路堤边坡动力响应特性,本文基于动力理论控制方程及大型非线性有限元软件ABAQUS,建立了地震荷载作用下土钉支护多年冻土区路堑边坡动力响应三维有限元数值模型,并在模型边界处添加了三维黏弹性人工边界,最后分析该三维模型的加速度响应、位移响应及土钉轴力响应云图。结果表明:加速度峰值随着路堑边坡高程及激振加速度峰值增加而增加,在路堑边坡坡顶位置处达到最大,且加速度云图成分层现象表明,土钉对该路堑边坡起到了加固作用;此外,在不同地震波峰值加速度作用下,相同位置处的位移响应峰值却有明显的不同,坡顶位移最大,表明地震荷载对该路堑边坡坡顶破坏效应最为明显,土钉轴力具有高程放大效应和坡面放大效应,路堑坡底至坡顶的土钉端部轴力峰值逐渐增大。本文数值模拟模型及结论,可为制定地震荷载作用下,土钉支护多年冻土区路堑边坡抗震设计提供一定参考。
为了更科学地评价地震荷载作用下土钉支护多年冻土区路堤边坡动力响应特性,本文基于动力理论控制方程及大型非线性有限元软件ABAQUS,建立了地震荷载作用下土钉支护多年冻土区路堑边坡动力响应三维有限元数值模型,并在模型边界处添加了三维黏弹性人工边界,最后分析该三维模型的加速度响应、位移响应及土钉轴力响应云图。结果表明:加速度峰值随着路堑边坡高程及激振加速度峰值增加而增加,在路堑边坡坡顶位置处达到最大,且加速度云图成分层现象表明,土钉对该路堑边坡起到了加固作用;此外,在不同地震波峰值加速度作用下,相同位置处的位移响应峰值却有明显的不同,坡顶位移最大,表明地震荷载对该路堑边坡坡顶破坏效应最为明显,土钉轴力具有高程放大效应和坡面放大效应,路堑坡底至坡顶的土钉端部轴力峰值逐渐增大。本文数值模拟模型及结论,可为制定地震荷载作用下,土钉支护多年冻土区路堑边坡抗震设计提供一定参考。
为了更科学地评价地震荷载作用下土钉支护多年冻土区路堤边坡动力响应特性,本文基于动力理论控制方程及大型非线性有限元软件ABAQUS,建立了地震荷载作用下土钉支护多年冻土区路堑边坡动力响应三维有限元数值模型,并在模型边界处添加了三维黏弹性人工边界,最后分析该三维模型的加速度响应、位移响应及土钉轴力响应云图。结果表明:加速度峰值随着路堑边坡高程及激振加速度峰值增加而增加,在路堑边坡坡顶位置处达到最大,且加速度云图成分层现象表明,土钉对该路堑边坡起到了加固作用;此外,在不同地震波峰值加速度作用下,相同位置处的位移响应峰值却有明显的不同,坡顶位移最大,表明地震荷载对该路堑边坡坡顶破坏效应最为明显,土钉轴力具有高程放大效应和坡面放大效应,路堑坡底至坡顶的土钉端部轴力峰值逐渐增大。本文数值模拟模型及结论,可为制定地震荷载作用下,土钉支护多年冻土区路堑边坡抗震设计提供一定参考。
为了更科学地评价地震荷载作用下土钉支护多年冻土区路堤边坡动力响应特性,本文基于动力理论控制方程及大型非线性有限元软件ABAQUS,建立了地震荷载作用下土钉支护多年冻土区路堑边坡动力响应三维有限元数值模型,并在模型边界处添加了三维黏弹性人工边界,最后分析该三维模型的加速度响应、位移响应及土钉轴力响应云图。结果表明:加速度峰值随着路堑边坡高程及激振加速度峰值增加而增加,在路堑边坡坡顶位置处达到最大,且加速度云图成分层现象表明,土钉对该路堑边坡起到了加固作用;此外,在不同地震波峰值加速度作用下,相同位置处的位移响应峰值却有明显的不同,坡顶位移最大,表明地震荷载对该路堑边坡坡顶破坏效应最为明显,土钉轴力具有高程放大效应和坡面放大效应,路堑坡底至坡顶的土钉端部轴力峰值逐渐增大。本文数值模拟模型及结论,可为制定地震荷载作用下,土钉支护多年冻土区路堑边坡抗震设计提供一定参考。
为了更科学地评价地震荷载作用下土钉支护多年冻土区路堤边坡动力响应特性,本文基于动力理论控制方程及大型非线性有限元软件ABAQUS,建立了地震荷载作用下土钉支护多年冻土区路堑边坡动力响应三维有限元数值模型,并在模型边界处添加了三维黏弹性人工边界,最后分析该三维模型的加速度响应、位移响应及土钉轴力响应云图。结果表明:加速度峰值随着路堑边坡高程及激振加速度峰值增加而增加,在路堑边坡坡顶位置处达到最大,且加速度云图成分层现象表明,土钉对该路堑边坡起到了加固作用;此外,在不同地震波峰值加速度作用下,相同位置处的位移响应峰值却有明显的不同,坡顶位移最大,表明地震荷载对该路堑边坡坡顶破坏效应最为明显,土钉轴力具有高程放大效应和坡面放大效应,路堑坡底至坡顶的土钉端部轴力峰值逐渐增大。本文数值模拟模型及结论,可为制定地震荷载作用下,土钉支护多年冻土区路堑边坡抗震设计提供一定参考。
为了更科学地评价地震荷载作用下土钉支护多年冻土区路堤边坡动力响应特性,本文基于动力理论控制方程及大型非线性有限元软件ABAQUS,建立了地震荷载作用下土钉支护多年冻土区路堑边坡动力响应三维有限元数值模型,并在模型边界处添加了三维黏弹性人工边界,最后分析该三维模型的加速度响应、位移响应及土钉轴力响应云图。结果表明:加速度峰值随着路堑边坡高程及激振加速度峰值增加而增加,在路堑边坡坡顶位置处达到最大,且加速度云图成分层现象表明,土钉对该路堑边坡起到了加固作用;此外,在不同地震波峰值加速度作用下,相同位置处的位移响应峰值却有明显的不同,坡顶位移最大,表明地震荷载对该路堑边坡坡顶破坏效应最为明显,土钉轴力具有高程放大效应和坡面放大效应,路堑坡底至坡顶的土钉端部轴力峰值逐渐增大。本文数值模拟模型及结论,可为制定地震荷载作用下,土钉支护多年冻土区路堑边坡抗震设计提供一定参考。
为了更科学地评价地震荷载作用下土钉支护多年冻土区路堤边坡动力响应特性,本文基于动力理论控制方程及大型非线性有限元软件ABAQUS,建立了地震荷载作用下土钉支护多年冻土区路堑边坡动力响应三维有限元数值模型,并在模型边界处添加了三维黏弹性人工边界,最后分析该三维模型的加速度响应、位移响应及土钉轴力响应云图。结果表明:加速度峰值随着路堑边坡高程及激振加速度峰值增加而增加,在路堑边坡坡顶位置处达到最大,且加速度云图成分层现象表明,土钉对该路堑边坡起到了加固作用;此外,在不同地震波峰值加速度作用下,相同位置处的位移响应峰值却有明显的不同,坡顶位移最大,表明地震荷载对该路堑边坡坡顶破坏效应最为明显,土钉轴力具有高程放大效应和坡面放大效应,路堑坡底至坡顶的土钉端部轴力峰值逐渐增大。本文数值模拟模型及结论,可为制定地震荷载作用下,土钉支护多年冻土区路堑边坡抗震设计提供一定参考。