基于地源热泵的分布式供热系统是一种寒区铁路路基冻胀病害整治新方法。不同波长与变形量的路基冻胀会引起轨道结构产生不同的变形破坏模式和不平顺类型。为防止主动供热作用下路基不均匀温度场与残余冻胀变形引起轨道次生高低和水平不平顺,提出路基分布式供热系统的设计要素及建议值。建立单线铁路路基的足尺模型试验平台,制作与安装实体地源热泵系统,测试其在冬季的供热性能与热扩散规律。结合数值模拟手段,以供热管横向倾角(0°~10°)和纵向间距(1.0~4.0 m)这2个要素为变量,共计77个工况,分析供热管在路基内部的三维传热特性。基于路基不同部位冻结深度及其差异值等指标的变化规律,对供热管的布置方案进行优化。结果表明:热泵供热管在最冷日的平均温度为28.6℃,起到有效的热源功能。供热管倾斜布置有利于消除横断面上的冻结深度差异。案例路基横向冻结深度差异值随着供热管横向倾角呈先减小、后增大的规律,变化幅度为0.87 cm/1°;路基纵向冻结深度差异值随着供热管纵向间距呈逐渐增大的规律,变化幅度为1.2~3.2 cm/0.5 m。路基残余不均匀冻胀引起高低不平顺的可能性高于水平不平顺,且对供热管纵向间距的敏感性...
基于地源热泵的分布式供热系统是一种寒区铁路路基冻胀病害整治新方法。不同波长与变形量的路基冻胀会引起轨道结构产生不同的变形破坏模式和不平顺类型。为防止主动供热作用下路基不均匀温度场与残余冻胀变形引起轨道次生高低和水平不平顺,提出路基分布式供热系统的设计要素及建议值。建立单线铁路路基的足尺模型试验平台,制作与安装实体地源热泵系统,测试其在冬季的供热性能与热扩散规律。结合数值模拟手段,以供热管横向倾角(0°~10°)和纵向间距(1.0~4.0 m)这2个要素为变量,共计77个工况,分析供热管在路基内部的三维传热特性。基于路基不同部位冻结深度及其差异值等指标的变化规律,对供热管的布置方案进行优化。结果表明:热泵供热管在最冷日的平均温度为28.6℃,起到有效的热源功能。供热管倾斜布置有利于消除横断面上的冻结深度差异。案例路基横向冻结深度差异值随着供热管横向倾角呈先减小、后增大的规律,变化幅度为0.87 cm/1°;路基纵向冻结深度差异值随着供热管纵向间距呈逐渐增大的规律,变化幅度为1.2~3.2 cm/0.5 m。路基残余不均匀冻胀引起高低不平顺的可能性高于水平不平顺,且对供热管纵向间距的敏感性...
基于地源热泵的人工供热方法是寒区路基冻害防控的一种新措施。该文建立路基专用热泵的稳态热力计算模型,用于热泵选型匹配与优化设计。建立主要部件压缩机、冷凝器、节流器、蒸发器的结构参数与环境参数、制冷剂状态参数之间的函数关系,提出子模型间耦合方法,基于Python语言编制程序。首先,选择压缩机和制冷剂类型,拟定供热温度和集热温度;然后,依次调用4个子程序,以部件目标参数的计算值与拟定值是否相等为收敛判据,以制冷剂状态参数的计算值与拟定值是否相等为终止判据。循环计算收敛时对应的部件结构参数即为优化结果。文中选择准池铁路某冻害路基设计供热方案,验证程序可靠性。结果表明,热泵性能达到预设水平,保证了路基供热方案的有效性。
基于地源热泵的人工供热方法是寒区路基冻害防控的一种新措施。该文建立路基专用热泵的稳态热力计算模型,用于热泵选型匹配与优化设计。建立主要部件压缩机、冷凝器、节流器、蒸发器的结构参数与环境参数、制冷剂状态参数之间的函数关系,提出子模型间耦合方法,基于Python语言编制程序。首先,选择压缩机和制冷剂类型,拟定供热温度和集热温度;然后,依次调用4个子程序,以部件目标参数的计算值与拟定值是否相等为收敛判据,以制冷剂状态参数的计算值与拟定值是否相等为终止判据。循环计算收敛时对应的部件结构参数即为优化结果。文中选择准池铁路某冻害路基设计供热方案,验证程序可靠性。结果表明,热泵性能达到预设水平,保证了路基供热方案的有效性。
路基冻胀是冻土地区铁路运营的顽疾,在防排水、土质改良和保温等措施难以消除冻胀的情况下,人工供热是一种备选方案。依托准池铁路K44+970—K45+020冻害路段,设计基于地源热泵的分布式供热方案,建设1个长度为20 m的现场试验段。在2021—2022年冬季开展1个冻融周期的供热试验,基于监测数据对热泵换热温度、路基温度场、冻结深度、轨道变形量等指标进行分析。研究结果表明:热泵的供热温度可达50℃以上,热源品位高且供热量稳定。供热试验段内路基冻结范围和温度极值比天然工况显著减小,线路中心处最大冻结深度由148 cm减小为88 cm,冻结锋面保持在地下水毛细迁移高度以上。试验段路基横向冻结深度差值由天然条件的49 cm减小为13 cm,有利于消除横向冻胀差异引起的水平不平顺。试验段纵向上的冻结深度差值基本控制在20 cm以内,可以避免次生高低不平顺。天然路基呈先发育深层冻胀、后在降雪融水入渗时发育浅层冻胀的规律,最大冻胀量达9.4 mm。试验段内路基未发育深层冻胀,且浅层冻胀量得到有效控制,轨道变形量控制在±3 mm以内,没有超出作业验收管理值,有效缓解了试验段冻害问题。
路基冻胀是冻土地区铁路运营的顽疾,在防排水、土质改良和保温等措施难以消除冻胀的情况下,人工供热是一种备选方案。依托准池铁路K44+970—K45+020冻害路段,设计基于地源热泵的分布式供热方案,建设1个长度为20 m的现场试验段。在2021—2022年冬季开展1个冻融周期的供热试验,基于监测数据对热泵换热温度、路基温度场、冻结深度、轨道变形量等指标进行分析。研究结果表明:热泵的供热温度可达50℃以上,热源品位高且供热量稳定。供热试验段内路基冻结范围和温度极值比天然工况显著减小,线路中心处最大冻结深度由148 cm减小为88 cm,冻结锋面保持在地下水毛细迁移高度以上。试验段路基横向冻结深度差值由天然条件的49 cm减小为13 cm,有利于消除横向冻胀差异引起的水平不平顺。试验段纵向上的冻结深度差值基本控制在20 cm以内,可以避免次生高低不平顺。天然路基呈先发育深层冻胀、后在降雪融水入渗时发育浅层冻胀的规律,最大冻胀量达9.4 mm。试验段内路基未发育深层冻胀,且浅层冻胀量得到有效控制,轨道变形量控制在±3 mm以内,没有超出作业验收管理值,有效缓解了试验段冻害问题。
针对寒区铁路路基冻胀病害,提出一种基于地源热泵的供热系统及分布式方案,设计I级单线铁路的足尺半幅路基试验平台,对路基温度场进行监测与分析。定义供热系统的有效热影响半径为在一定时间内将路基冻结深度控制在有害临界值以内的纵向范围,并提出有效热影响半径的预测方法。结果表明:热泵系统的供热温度可达30℃以上,制热系数(COP)可达6.9,在寒冷气候下具有稳定的地温能转化性能与节能性。有效供热量和COP随着时间的延长而逐渐减小。土体升温幅度随着与热源距离的增大而降低,且路基竖向升温速率大于纵向。人工供热对寒潮天气影响具有显著的抑制作用,试验结束时供热系统两侧2.0和3.0 m范围的冻结深度控制分别在30和35 cm以内。有效热影响半径与供热时间和有害冻结深度均呈正比关系。当有害冻结深度为30,35,40 cm,供热5 d时的有效热影响半径分别为0.44,0.64,0.83 m;若热影响半径需达到1.5 m,所需供热时间分别为53,41,35 d。实际应用时应根据路基有害冻结深度和冻胀处置时间要求,合理设计供热系统沿线路的纵向布设间距,以保证供相邻供热系统的解冻范围在规定时间内交汇。
针对寒区铁路路基冻胀病害,提出一种基于地源热泵的供热系统及分布式方案,设计I级单线铁路的足尺半幅路基试验平台,对路基温度场进行监测与分析。定义供热系统的有效热影响半径为在一定时间内将路基冻结深度控制在有害临界值以内的纵向范围,并提出有效热影响半径的预测方法。结果表明:热泵系统的供热温度可达30℃以上,制热系数(COP)可达6.9,在寒冷气候下具有稳定的地温能转化性能与节能性。有效供热量和COP随着时间的延长而逐渐减小。土体升温幅度随着与热源距离的增大而降低,且路基竖向升温速率大于纵向。人工供热对寒潮天气影响具有显著的抑制作用,试验结束时供热系统两侧2.0和3.0 m范围的冻结深度控制分别在30和35 cm以内。有效热影响半径与供热时间和有害冻结深度均呈正比关系。当有害冻结深度为30,35,40 cm,供热5 d时的有效热影响半径分别为0.44,0.64,0.83 m;若热影响半径需达到1.5 m,所需供热时间分别为53,41,35 d。实际应用时应根据路基有害冻结深度和冻胀处置时间要求,合理设计供热系统沿线路的纵向布设间距,以保证供相邻供热系统的解冻范围在规定时间内交汇。
文章针对寒区路基工程广泛面临的冻害问题,基于地源热泵技术,构建一种主动温控式路基。通过模型试验,对比了热泵在不同运行模式下的换热特性,结果表明:在连续运行模式下,热泵供热温度最高达95.9℃,吸热温度低至-8.5℃,可以有效防治冻胀。热泵定时运行模式的换热效率优于定温模式,定温模式的启停循环次数多、压缩机能耗大;在定时模式下,随着启停比的增大,供热温度逐渐升高,而吸热温度先降低、后升高,启停比为2∶1时,换热效果最优;面向单线铁路路基冻胀抢险时,建议热泵间距取1.5~3.0 m,热泵功率宜取1.0~2.0 kW,根据冻胀程度动态地控制启停比例。
文章针对寒区路基工程广泛面临的冻害问题,基于地源热泵技术,构建一种主动温控式路基。通过模型试验,对比了热泵在不同运行模式下的换热特性,结果表明:在连续运行模式下,热泵供热温度最高达95.9℃,吸热温度低至-8.5℃,可以有效防治冻胀。热泵定时运行模式的换热效率优于定温模式,定温模式的启停循环次数多、压缩机能耗大;在定时模式下,随着启停比的增大,供热温度逐渐升高,而吸热温度先降低、后升高,启停比为2∶1时,换热效果最优;面向单线铁路路基冻胀抢险时,建议热泵间距取1.5~3.0 m,热泵功率宜取1.0~2.0 kW,根据冻胀程度动态地控制启停比例。