【目的】探究大兴安岭多年冻土区小流域地表水和地下水的水化学特征并分析水体溶质元素来源及主要影响因子。【方法】在大兴安岭多年冻土区老爷岭小流域,于2023年4月1日至7月30日,采集地表水、潜水和承压水样品,测定主要离子浓度。基于数理统计、Piper三线图、Gibbs图、矿物稳定场图和离子比例系数等方法,分析地表水和地下水的水化学特征,揭示其季节变化规律及溶质元素来源。【结果】研究表明,1)大兴安岭多年冻土区老爷岭小流域的地下水和地表水为弱碱性淡水,优势离子为HCO3-,Ca2+、Mg2+。地表水、潜水、承压水的水化学类型分别为HCO3-Ca·Mg型、HCO3-Ca·Na型、HCO3-Ca·Mg·Na型。2)地表水和地下水的主要离子浓度有一定的季节性差异。在融雪径流期,地表水和潜水的主要离子浓度高,呈先上升后下降的变化趋势,而承压水的离子浓度呈平缓上升趋势;在生长季,地表水、潜水和承压水的离子浓度较为稳定;3)降水量、径流深与地表水中离...
【目的】探究大兴安岭多年冻土区小流域地表水和地下水的水化学特征并分析水体溶质元素来源及主要影响因子。【方法】在大兴安岭多年冻土区老爷岭小流域,于2023年4月1日至7月30日,采集地表水、潜水和承压水样品,测定主要离子浓度。基于数理统计、Piper三线图、Gibbs图、矿物稳定场图和离子比例系数等方法,分析地表水和地下水的水化学特征,揭示其季节变化规律及溶质元素来源。【结果】研究表明,1)大兴安岭多年冻土区老爷岭小流域的地下水和地表水为弱碱性淡水,优势离子为HCO3-,Ca2+、Mg2+。地表水、潜水、承压水的水化学类型分别为HCO3-Ca·Mg型、HCO3-Ca·Na型、HCO3-Ca·Mg·Na型。2)地表水和地下水的主要离子浓度有一定的季节性差异。在融雪径流期,地表水和潜水的主要离子浓度高,呈先上升后下降的变化趋势,而承压水的离子浓度呈平缓上升趋势;在生长季,地表水、潜水和承压水的离子浓度较为稳定;3)降水量、径流深与地表水中离...
【目的】探究大兴安岭多年冻土区小流域地表水和地下水的水化学特征并分析水体溶质元素来源及主要影响因子。【方法】在大兴安岭多年冻土区老爷岭小流域,于2023年4月1日至7月30日,采集地表水、潜水和承压水样品,测定主要离子浓度。基于数理统计、Piper三线图、Gibbs图、矿物稳定场图和离子比例系数等方法,分析地表水和地下水的水化学特征,揭示其季节变化规律及溶质元素来源。【结果】研究表明,1)大兴安岭多年冻土区老爷岭小流域的地下水和地表水为弱碱性淡水,优势离子为HCO3-,Ca2+、Mg2+。地表水、潜水、承压水的水化学类型分别为HCO3-Ca·Mg型、HCO3-Ca·Na型、HCO3-Ca·Mg·Na型。2)地表水和地下水的主要离子浓度有一定的季节性差异。在融雪径流期,地表水和潜水的主要离子浓度高,呈先上升后下降的变化趋势,而承压水的离子浓度呈平缓上升趋势;在生长季,地表水、潜水和承压水的离子浓度较为稳定;3)降水量、径流深与地表水中离...
【目的】探究大兴安岭多年冻土区小流域地表水和地下水的水化学特征并分析水体溶质元素来源及主要影响因子。【方法】在大兴安岭多年冻土区老爷岭小流域,于2023年4月1日至7月30日,采集地表水、潜水和承压水样品,测定主要离子浓度。基于数理统计、Piper三线图、Gibbs图、矿物稳定场图和离子比例系数等方法,分析地表水和地下水的水化学特征,揭示其季节变化规律及溶质元素来源。【结果】研究表明,1)大兴安岭多年冻土区老爷岭小流域的地下水和地表水为弱碱性淡水,优势离子为HCO3-,Ca2+、Mg2+。地表水、潜水、承压水的水化学类型分别为HCO3-Ca·Mg型、HCO3-Ca·Na型、HCO3-Ca·Mg·Na型。2)地表水和地下水的主要离子浓度有一定的季节性差异。在融雪径流期,地表水和潜水的主要离子浓度高,呈先上升后下降的变化趋势,而承压水的离子浓度呈平缓上升趋势;在生长季,地表水、潜水和承压水的离子浓度较为稳定;3)降水量、径流深与地表水中离...
【目的】探究大兴安岭多年冻土区小流域地表水和地下水的水化学特征并分析水体溶质元素来源及主要影响因子。【方法】在大兴安岭多年冻土区老爷岭小流域,于2023年4月1日至7月30日,采集地表水、潜水和承压水样品,测定主要离子浓度。基于数理统计、Piper三线图、Gibbs图、矿物稳定场图和离子比例系数等方法,分析地表水和地下水的水化学特征,揭示其季节变化规律及溶质元素来源。【结果】研究表明,1)大兴安岭多年冻土区老爷岭小流域的地下水和地表水为弱碱性淡水,优势离子为HCO3-,Ca2+、Mg2+。地表水、潜水、承压水的水化学类型分别为HCO3-Ca·Mg型、HCO3-Ca·Na型、HCO3-Ca·Mg·Na型。2)地表水和地下水的主要离子浓度有一定的季节性差异。在融雪径流期,地表水和潜水的主要离子浓度高,呈先上升后下降的变化趋势,而承压水的离子浓度呈平缓上升趋势;在生长季,地表水、潜水和承压水的离子浓度较为稳定;3)降水量、径流深与地表水中离...
中低纬度高寒山区蕴藏着丰富的淡水资源,对于向中下游地区供水具有至关重要的保障作用。季节冻土区松散沉积物是连通山区和河流的重要通道,其地下水与地表水交互过程显著影响该区域水资源的可利用性和生态系统的稳定性。为揭示高寒流域季节冻土区地下水与地表水交互机制,本文以祁连山葫芦沟流域季节冻土区为研究对象,结合该区域的水文地质条件、地下水位监测数据,利用GMS软件构建三维地下水流数值模型,对季节性融冻作用影响下地下水与地表水转化关系进行模拟和分析。结果表明:在冷季(1—3月、10—12月),季节冻土层的冻结状态阻碍了支流河段的水源补给,但由于季节冻土层分布的不连续,支流河段河床仍存在部分融区,使得地下水仍对东、西支河段河道径流有一定的贡献,且地下水向东、西支河段河道径流的总转化量分别为277 188 m3和105 191 m3,其转化量与冲洪积孔隙含水层的补给区和排泄区之间的水力梯度呈正相关;在暖季(4—9月),支流河段获取到更多降雨和冰雪融水的水源补给,与地下水的交互关系已经转变为地表水向地下水转化,东、西支河段河水渗漏补给地下水的总转化量分别为625...
中低纬度高寒山区蕴藏着丰富的淡水资源,对于向中下游地区供水具有至关重要的保障作用。季节冻土区松散沉积物是连通山区和河流的重要通道,其地下水与地表水交互过程显著影响该区域水资源的可利用性和生态系统的稳定性。为揭示高寒流域季节冻土区地下水与地表水交互机制,本文以祁连山葫芦沟流域季节冻土区为研究对象,结合该区域的水文地质条件、地下水位监测数据,利用GMS软件构建三维地下水流数值模型,对季节性融冻作用影响下地下水与地表水转化关系进行模拟和分析。结果表明:在冷季(1—3月、10—12月),季节冻土层的冻结状态阻碍了支流河段的水源补给,但由于季节冻土层分布的不连续,支流河段河床仍存在部分融区,使得地下水仍对东、西支河段河道径流有一定的贡献,且地下水向东、西支河段河道径流的总转化量分别为277 188 m3和105 191 m3,其转化量与冲洪积孔隙含水层的补给区和排泄区之间的水力梯度呈正相关;在暖季(4—9月),支流河段获取到更多降雨和冰雪融水的水源补给,与地下水的交互关系已经转变为地表水向地下水转化,东、西支河段河水渗漏补给地下水的总转化量分别为625...
中低纬度高寒山区蕴藏着丰富的淡水资源,对于向中下游地区供水具有至关重要的保障作用。季节冻土区松散沉积物是连通山区和河流的重要通道,其地下水与地表水交互过程显著影响该区域水资源的可利用性和生态系统的稳定性。为揭示高寒流域季节冻土区地下水与地表水交互机制,本文以祁连山葫芦沟流域季节冻土区为研究对象,结合该区域的水文地质条件、地下水位监测数据,利用GMS软件构建三维地下水流数值模型,对季节性融冻作用影响下地下水与地表水转化关系进行模拟和分析。结果表明:在冷季(1—3月、10—12月),季节冻土层的冻结状态阻碍了支流河段的水源补给,但由于季节冻土层分布的不连续,支流河段河床仍存在部分融区,使得地下水仍对东、西支河段河道径流有一定的贡献,且地下水向东、西支河段河道径流的总转化量分别为277 188 m3和105 191 m3,其转化量与冲洪积孔隙含水层的补给区和排泄区之间的水力梯度呈正相关;在暖季(4—9月),支流河段获取到更多降雨和冰雪融水的水源补给,与地下水的交互关系已经转变为地表水向地下水转化,东、西支河段河水渗漏补给地下水的总转化量分别为625...
柴达木盆地北部是柴达木循环经济试验区“一区四园”中三个园区的分布区,水资源匮乏,近20年气候变化又使径流发生了显著改变,对水资源评价、河流生态和非地带性植被产生一定影响。为了全方位评价区域径流特征,本文采用WEP 模型对盆地北部6条河流进行长系列径流模拟,并采用实测与模拟结合的数据,结合PCA法筛选出的8个代表性IHA指标,从产汇流时空规律与环境特征流量不同角度进行分析,结果表明:(1)2001年后,山区径流深增加8%~28%,平原区不产流面积缩小58%;(2)1981到2020年径流系列于本世纪初发生突变,突变后径流量均值增幅8%~25%,近10年的增加分两种情况:有冰川补给的河流增加14%~41%,无冰川补给的河流增加26%~28%;考虑径流系列的不一致性,采用短周期和典型周期系列分别评价冰川融雪型和降水补给型河流的多年平均径流量,计算盆地北部区地表水资源总量为10.52亿m3;(3)小洪水因刺激鱼类产卵成为最典型的环境特征流量,研究发现小洪水次数与历时均增加,洪峰流量增加13%~37%。
柴达木盆地北部是柴达木循环经济试验区“一区四园”中三个园区的分布区,水资源匮乏,近20年气候变化又使径流发生了显著改变,对水资源评价、河流生态和非地带性植被产生一定影响。为了全方位评价区域径流特征,本文采用WEP 模型对盆地北部6条河流进行长系列径流模拟,并采用实测与模拟结合的数据,结合PCA法筛选出的8个代表性IHA指标,从产汇流时空规律与环境特征流量不同角度进行分析,结果表明:(1)2001年后,山区径流深增加8%~28%,平原区不产流面积缩小58%;(2)1981到2020年径流系列于本世纪初发生突变,突变后径流量均值增幅8%~25%,近10年的增加分两种情况:有冰川补给的河流增加14%~41%,无冰川补给的河流增加26%~28%;考虑径流系列的不一致性,采用短周期和典型周期系列分别评价冰川融雪型和降水补给型河流的多年平均径流量,计算盆地北部区地表水资源总量为10.52亿m3;(3)小洪水因刺激鱼类产卵成为最典型的环境特征流量,研究发现小洪水次数与历时均增加,洪峰流量增加13%~37%。