欧亚大陆积雪是影响中高纬气候的重要因子,深入理解该区域积雪异常变化的特征及其成因,对于气候研究和预测有重要意义。目前的研究大多关注积雪年际、年代际变化及其气候效应,而有关积雪季节内变化的认识还有待加强。本文基于观测和再分析资料,通过统计诊断探讨了欧亚大陆不同区域春季融雪的季节内变化及其与之相关的大气环流特征和地表能量演变过程。结果表明,欧亚大陆春季融雪异常具有明显的季节内变化特征,其主导周期为10~30 d,且季节内变化的信号主要出现在斯堪的纳维亚半岛、东欧平原和西西伯利亚三个区域。进一步分析表明,斯堪的纳维亚半岛地区融雪季节内变化可能和斯堪的纳维亚半岛遥相关型负位相(SCA-)有关,东欧平原融雪季节内变化可能和欧亚遥相关型负位相(EU-)有关,西西伯利亚地区融雪季节内变化可能和斯堪的纳维亚半岛遥相关型正位相(SCA+)有关。不同区域导致融雪异常的原因存在明显差异,长波辐射增加可能是斯堪的纳维亚半岛区域开始发生融雪异常的主要原因;而在东欧平原和西西伯利亚区域,感热通量异常可能是开始发生融雪异常的主要原因。
欧亚大陆积雪是影响中高纬气候的重要因子,深入理解该区域积雪异常变化的特征及其成因,对于气候研究和预测有重要意义。目前的研究大多关注积雪年际、年代际变化及其气候效应,而有关积雪季节内变化的认识还有待加强。本文基于观测和再分析资料,通过统计诊断探讨了欧亚大陆不同区域春季融雪的季节内变化及其与之相关的大气环流特征和地表能量演变过程。结果表明,欧亚大陆春季融雪异常具有明显的季节内变化特征,其主导周期为10~30 d,且季节内变化的信号主要出现在斯堪的纳维亚半岛、东欧平原和西西伯利亚三个区域。进一步分析表明,斯堪的纳维亚半岛地区融雪季节内变化可能和斯堪的纳维亚半岛遥相关型负位相(SCA-)有关,东欧平原融雪季节内变化可能和欧亚遥相关型负位相(EU-)有关,西西伯利亚地区融雪季节内变化可能和斯堪的纳维亚半岛遥相关型正位相(SCA+)有关。不同区域导致融雪异常的原因存在明显差异,长波辐射增加可能是斯堪的纳维亚半岛区域开始发生融雪异常的主要原因;而在东欧平原和西西伯利亚区域,感热通量异常可能是开始发生融雪异常的主要原因。
选取青藏高原(下称高原)东部玛曲、玛多和垭口3个野外站点的观测资料,针对不连续积雪过程,研究高原东部不同季节的积雪过程对地表能量和土壤水热的影响。结果表明:受积雪高反照率的影响,高原东部地区各季节降雪后净短波辐射减小,净辐射较降雪前减小60%~140%;积雪积累期内感热、潜热及土壤热通量均减小,感热通量和土壤热通量出现负值。春、秋两季积雪过程中,能量以感热、潜热和土壤热通量三种形式分配;冬季积雪过程中能量以感热和土壤热通量分配为主,潜热通量较小,日均值在10 W·m-2左右;而夏季积雪消融期潜热通量较大,日均值可达80 W·m-2左右。各季节积雪的反复积累和消融过程对大气及土壤均以降温作用为主。秋季降雪后,气温和浅层土壤温度降低,当土壤温度降到冰点以下时,土壤提前进入冻结期;而春季降雪后,则可能使得正在发生融化的土壤又再次冻结。冬季晴天积雪过程中,在积雪积累期,积雪对土壤起增温作用,0~20 cm土壤温度日均值升高1~2℃,导致浅层冻结土壤融化,土壤含水量略增加,在消融期,积雪对土壤仍起降温作用;而冬季阴天积雪对土壤均为冷却作用。夏季积雪积累...
选取青藏高原(下称高原)东部玛曲、玛多和垭口3个野外站点的观测资料,针对不连续积雪过程,研究高原东部不同季节的积雪过程对地表能量和土壤水热的影响。结果表明:受积雪高反照率的影响,高原东部地区各季节降雪后净短波辐射减小,净辐射较降雪前减小60%~140%;积雪积累期内感热、潜热及土壤热通量均减小,感热通量和土壤热通量出现负值。春、秋两季积雪过程中,能量以感热、潜热和土壤热通量三种形式分配;冬季积雪过程中能量以感热和土壤热通量分配为主,潜热通量较小,日均值在10 W·m-2左右;而夏季积雪消融期潜热通量较大,日均值可达80 W·m-2左右。各季节积雪的反复积累和消融过程对大气及土壤均以降温作用为主。秋季降雪后,气温和浅层土壤温度降低,当土壤温度降到冰点以下时,土壤提前进入冻结期;而春季降雪后,则可能使得正在发生融化的土壤又再次冻结。冬季晴天积雪过程中,在积雪积累期,积雪对土壤起增温作用,0~20 cm土壤温度日均值升高1~2℃,导致浅层冻结土壤融化,土壤含水量略增加,在消融期,积雪对土壤仍起降温作用;而冬季阴天积雪对土壤均为冷却作用。夏季积雪积累...
利用国家重大科学研究计划项目"青藏高原沙漠化对全球变化的响应"北麓河站2014-2015年陆面过程观测资料,根据5 cm土壤日最高和最低温度将冻土分为融化过程、完全融化、冻结过程和完全冻结四个阶段,分析了地表感热通量Hs、潜热通量LE、地表土壤热通量G0和波文比在不同冻融阶段的季节和日变化特征,并探讨了土壤冻融过程对地表能量及其分配的影响。结果表明,波文比和G0的季节变化受土壤冻融阶段转变的影响显著,其中土壤完全融化使波文比减小,G0变为正值;土壤冻结使波文比增大,G0变为负值。冻结过程对Hs和LE变化趋势的影响不明显,但是使波文比显著增大;融化过程使Hs停止增长并出现减小趋势,使LE增大,从而使波文比显著减小。Hs的日变化在不同冻融阶段差异较小。LE的日变化主要与浅层土壤含水量的大小和日变化有关,其中完全融化和完全冻结阶段土壤含水量的日变化较小,土壤含水量越大,LE越大;在融化过程和冻结过程阶段,土壤含水量的日变化较大,且与Rnet的日变化相反,限制了LE的增长。在冻结过程阶...
利用国家重大科学研究计划项目"青藏高原沙漠化对全球变化的响应"北麓河站2014-2015年陆面过程观测资料,根据5 cm土壤日最高和最低温度将冻土分为融化过程、完全融化、冻结过程和完全冻结四个阶段,分析了地表感热通量Hs、潜热通量LE、地表土壤热通量G0和波文比在不同冻融阶段的季节和日变化特征,并探讨了土壤冻融过程对地表能量及其分配的影响。结果表明,波文比和G0的季节变化受土壤冻融阶段转变的影响显著,其中土壤完全融化使波文比减小,G0变为正值;土壤冻结使波文比增大,G0变为负值。冻结过程对Hs和LE变化趋势的影响不明显,但是使波文比显著增大;融化过程使Hs停止增长并出现减小趋势,使LE增大,从而使波文比显著减小。Hs的日变化在不同冻融阶段差异较小。LE的日变化主要与浅层土壤含水量的大小和日变化有关,其中完全融化和完全冻结阶段土壤含水量的日变化较小,土壤含水量越大,LE越大;在融化过程和冻结过程阶段,土壤含水量的日变化较大,且与Rnet的日变化相反,限制了LE的增长。在冻结过程阶...
利用国家重大科学研究计划项目"青藏高原沙漠化对全球变化的响应"北麓河站2014-2015年陆面过程观测资料,根据5 cm土壤日最高和最低温度将冻土分为融化过程、完全融化、冻结过程和完全冻结四个阶段,分析了地表感热通量Hs、潜热通量LE、地表土壤热通量G0和波文比在不同冻融阶段的季节和日变化特征,并探讨了土壤冻融过程对地表能量及其分配的影响。结果表明,波文比和G0的季节变化受土壤冻融阶段转变的影响显著,其中土壤完全融化使波文比减小,G0变为正值;土壤冻结使波文比增大,G0变为负值。冻结过程对Hs和LE变化趋势的影响不明显,但是使波文比显著增大;融化过程使Hs停止增长并出现减小趋势,使LE增大,从而使波文比显著减小。Hs的日变化在不同冻融阶段差异较小。LE的日变化主要与浅层土壤含水量的大小和日变化有关,其中完全融化和完全冻结阶段土壤含水量的日变化较小,土壤含水量越大,LE越大;在融化过程和冻结过程阶段,土壤含水量的日变化较大,且与Rnet的日变化相反,限制了LE的增长。在冻结过程阶...
利用"全球协调加强观测计划之亚澳季风青藏高原试验(CAMP/Tibet)"中那曲地区BJ站2002年8月1日—2003年8月31日的观测资料作为水热耦合模式(Simultaneous Heat and Water,SHAW)的强迫场,对青藏高原中部季节冻土区地表能量通量特征进行了单点模拟研究。通过对实测值与模拟结果的对比分析,发现SHAW模式能较成功地模拟该地区地表能量通量特征,短波净辐射和长波净辐射的模拟值与观测值吻合较好,净辐射和土壤热通量在夏半年的模拟值与观测值也吻合,但相对夏、秋季而言,它们在冬、春季的模拟值较观测值略偏大。模拟的感热和潜热通量的季节变化比较合理,由模拟的感热和潜热通量计算的Bowen比能较好地解释不同季节太阳辐射的能量转化。